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Abstract. Polarization observables in inclusive and exclusive electrodisintegration of the deuteron using
a polarized beam and an oriented target are systematically surveyed using the standard nonrelativistic
framework of nuclear theory but with leading-order relativistic contributions included. The structure func-
tions and the asymmetries corresponding to the various nucleon polarization components are studied in a
variety of kinematic regions with respect to their sensitivity to realistic NN -potential models, to subnuclear
degrees of freedom in terms of meson exchange currents, isobar configurations and to relativistic effects in
different kinematical regions, serving as a benchmark for a test of present standard nuclear theory with
effective degrees of freedom.

PACS. 21.45.+v Few-body systems – 24.70.+s Polarization phenomena in reactions – 25.30.Fj Inelastic
electron scattering to continuum – 13.40.-f Electromagnetic processes and properties

1 Introduction

Over the past decade we have made a systematic study
of inclusive and exclusive deuteron electrodisintegration
with special emphasis on polarization observables [1–6].
The main purpose of this study was to reveal to what ex-
tent the use of polarized electrons, polarized targets and
polarization analysis of the outgoing nucleons will allow
a more thorough and more detailed investigation of the
dynamical features of the two-nucleon system than is pos-
sible without the use of polarization degrees of freedom
(d.o.f.). Specifically, our interest was focused on the role of
the NN -interaction model, of subnuclear degrees of free-
dom in terms of meson and isobar d.o.f. and in some cases
on the role of relativistic effects.

In the first paper of this investigation [1] we have con-
sidered the inclusive process, followed in [2] by the exclu-

sive case, ~d(~e, e′N)N , including beam and target polariza-
tion but without analysis of the outgoing nucleon polar-
ization. In parallel, as an extension to previous work in
photodisintegration [7,8], we have formally derived in [3]
all possible polarization structure functions, in total 648,
and linear relations between them since only 324 can
be linearly independent considering the fact that each

a e-mail: arenhoev@kph.uni-mainz.de

structure function is a Hermitean form of 18 independent
complex t-matrix elements, provided parity conservation
holds. Formal expressions for polarization observables, us-
ing a different representation scheme for the structure
functions, have been given by Dmitrasinovic and Gross [9]
where also the question of necessary and sufficient mea-
surements for a complete determination of all transition
amplitudes has been discussed in detail. In [4] we have
continued our own study by looking at the polarization
of one or both of the final-state nucleons in the exclusive
processes d(~e, e′N)N and d(~e, e′NN) with various combi-
nations of beam and target polarizations. Although one
has 324 linearly independent observables, they are not in-
dependent in the more general sense of considering them
as functions of the complex t-matrix elements. In view of
the fact that for the 18 complex matrix elements one phase
can be arbitrarily chosen and thus all observables are func-
tions of 35 independent and real variables, it is obvious
that the maximal number of independent observables is
35. Indeed, there exist quadratic relations among them, re-
ducing the 324 linearly independent observables to the re-
quired number. The remaining question then is, which one
of the many possible subsets of 35 observables constitutes
an independent set. This question has been investigated
recently in [5] for a two-body reaction of the type a+ b→
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Fig. 1. Geometry of exclusive electron-deuteron scattering with polarized electrons and an oriented deuteron target. The relative
np-momentum, denoted by ~pnp, is characterized by angles θ = θnp and φ = φnp, where the deuteron orientation axis, denoted

by ~d, is specified by angles θd and φd.

c+d, where we have derived a general criterion for the se-
lection of a complete set of independent observables, which
subsequently has been applied in [6] to the electromag-
netic deuteron break-up. In the latter work we have also
derived the relations between our structure functions and
the ones of [9]. Most recently, we have obtained the general
multipole expansion of the structure functions in [10].

Besides this interest in the hadron dynamics, there is a
second aspect which underlines the important role of the
deuteron from a different perspective, namely, in providing
an effective neutron target because of its extremely weak
binding. In fact, quasi-free reactions on the deuteron are
frequently used in order to investigate properties of the
neutron. A prominent example is the current interest in
the determination of the electric form factor of the neu-
tron GEn in quasi-free electron scattering off the deuteron
using longitudinally polarized electrons and either a vec-
tor polarized target or measuring the polarization of the
outgoing neutron. Therefore, we also have studied in detail
the sensitivity of polarization observables to GEn.

The special and very fundamental role of the two-
nucleon system for the investigation of the hadronic struc-
ture of nuclei, playing the same role as the hydrogen atom
in atomic physics, is underlined first of all by the fact, that
NN -scattering is of crucial importance for fitting realistic
NN -potential models. Secondly, the deuteron constitutes
the simplest nucleus. It is very weakly bound and allows
an exact theoretical treatment, at least in the nonrelativis-
tic regime. Thus, it should be clear that such an extensive
survey is justified. Moreover, the electromagnetic probe al-
lows a particularly clean and simple interpretation of the
associated observables, because it possesses a well known
but weak interaction so that in most cases lowest-order
approaches are sufficient.

With the present work we want to give a concise and
self-contained summary of this extensive study in order

to provide the interested experimentalist and theorist a
sort of handbook for the powerful tool of polarization ob-
servables in this fundamental process. We, furthermore,
want to update our previous results with respect to i) the
recent high-precision NN -potentials, ii) consistent π- and
ρ-like meson exchange currents, and iii) complete and con-
sistent inclusion of leading-order relativistic contributions
in a v/c-expansion. Thus, we consider this work also as
a benchmark for the status of present standard nuclear
theory with effective degrees of freedom in terms of nu-
cleon, meson and isobar d.o.f. To this end, we will collect
in the next section all material relevant for the formal as-
pects of this process including kinematic properties and
relations, and definition of observables for the inclusive as
well as for the exclusive reaction in terms of form factors
and structure functions, respectively. In sect. 3 we will
discuss the experimental separation of structure functions
and the question of how to select a complete set of ob-
servables. Some calculational details will be presented in
sect. 4 with respect to the hadronic interaction and the
electromagnetic current. The latter comprises contribu-
tions from one-body and meson exchange currents (MEC)
and isobar configurations (IC) as well as leading-order
relativistic contributions (RC). Then, we will discuss in
sect. 5 the influence of the above-mentioned dynamical ef-
fects on various inclusive and exclusive observables for dif-
ferent kinematic regions of energy and momentum trans-
fers. Finally, we will close with a summary and an outlook.

2 General formalism

2.1 Kinematics

At first, we will consider the kinematic properties of the
disintegration process e+ d→ e′ + n+ p. The kinematics
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is governed by the four-momenta of the participating par-
ticles, i.e., the four-momenta k1 and k2 of incoming and
scattered electron, respectively, and the four-momenta pd,
pp and pn of deuteron and outgoing proton and neutron,
respectively. In view of on-shell conditions for the partici-
pating particles, four-momentum conservation, freedom in
the choice of the incoming electron direction and in the
choice of the orientation of the scattering plane, one is left
with five independent variables for this process. Different
choices are possible and will be specified below.

The scattering geometry is illustrated in fig. 1. We dis-
tinguish three different planes which all intersect in one
line as defined by the direction of the three-momentum

transfer ~q = ~k1 − ~k2. First, there is the scattering plane
which is defined by the three-momenta of incoming and

scattered electrons ~k1 and ~k2, respectively, then the re-
action plane defined by the momentum transfer and the
relative momentum ~pnp = (~pp−~pn)/2 of the two outgoing
nucleons, and finally the orientation plane as defined again
by the momentum transfer and the axis of orientation for
a polarized deuteron.

The principal frames of reference are associated with
the scattering plane, namely, the laboratory frame, and
the c.m. frame of the final two nucleons, which is related
to the former one by a boost along ~q. The z-axis is cho-
sen in both frames along ~q and the y-axis in the direction

of ~k1 × ~k2, i.e., perpendicular to the scattering plane. Fi-
nally, the x-axis is defined by ~ex = ~ey × ~ez in order to
form a right-handed system. The laboratory frame is the
natural choice for the experimental determination of ob-
servables, whereas the c.m. frame is very convenient for
the theoretical calculation. Where necessary, we will in-
dicate by a superscript “lab” or “c.m.” to which frame a
given quantity refers. With respect to the c.m. frame, we
will denote throughout this paper by θ and φ the spher-
ical angles of the relative momentum ~pnp = (pc.m., θ, φ).
Thus, the spherical angles of proton and neutron momenta
in this frame are θc.m.p = θ, φc.m.p = φ and θc.m.n = π − θ,
φc.m.n = φ+π. The final hadronic state is furthermore char-
acterized by the excitation energy Enp which is related to
its invariant mass Wnp by

Enp = Wnp − 2M, (1)

where M denotes the average nucleon mass. Finally, θd
and φd denote the lab frame spherical angles of the
deuteron orientation axis in case a polarized deuteron tar-
get is employed.

The relevant quantities in the lab frame are the
four-momenta of the incoming and scattered electrons

klab1 = (Elab
1 , ~k lab

1 ) and klab2 = (Elab
2 , ~k lab

2 ), respec-
tively, the scattering angle θlabe , and the proton and neu-
tron three-momenta ~p lab

p = (plabp , θlabp , φlabp ) and ~p labn =

(plabn , θlabn , φlabn ), respectively. For the five independent
variables one convenient choice is E lab

1 , Elab
2 , θlabe , θlabp , and

φlabp . All other quantities are then determined by them. An

alternative choice is Elab
1 , Elab

2 , θlabe , and the spherical an-
gles of the relative np-momentum in the c.m. system, θ,
and φ. Still another useful choice is the np-final state ex-

citation energy Enp, the three-momentum transfer qc.m.,
again the angles θ and φ, all with respect to the c.m. frame
of the final np-state, and the lab electron scattering angle
θlabe . This choice is particularly useful for formal investiga-
tions of the structure functions, because the latter depend
solely on Enp, q

c.m., and θ, if calculated in the c.m. frame.
We will now list the various relevant kinematic quan-

tities in the lab and c.m. frames and their relation to the
chosen independent variables. Throughout this work we
will denote the square of a four-vector xν by x2ν = x20−~x 2

and use x = |~x|. For given electron momenta ~k lab
1 , ~k lab

2

and scattering angle θlabe , one has for the energy and mo-
mentum transfers in the lab frame

ωlab = Elab
1 − Elab

2 , (2)

~q lab = ~k lab
1 − ~k lab

2 , (3)

and from this the invariant mass Wnp of the np-final state
in terms of lab and c.m. frame quantities

Wnp =
√

(Elab
np )

2 − (qlab)2 (4a)

=
√

(Md (Md + 2ωlab) + q2ν) (4b)

= ωc.m. + Ec.m.
d , (4c)

where

Ec.m.
d =

√
M2

d + (qc.m.)2 (5)

denotes the deuteron c.m. energy, and

Elab
np = ωlab +Md (6)

the lab energy of the final hadronic state. At the photon
point ωlab = qc.m. one finds according to (4c) and (5) the
relation

qc.m. =
W 2
np −M2

d

2Wnp

= (Enp + εd)

(
1− Enp + εd

2(Enp + 2M)

)
, (7)

where εd denotes the deuteron binding energy.
The boost parameter γ, which governs the transfor-

mation from the lab to the c.m. frame and vice versa, is
given by

γ =
Elab
np

Wnp
(8a)

=
Ec.m.
d

Md
. (8b)

Energy and momentum transfers in the lab and c.m.
frames are related to each other by

ωc.m. =
1

Wnp

(
Md ω

lab + q2ν
)
, (9a)

qc.m. =
Md

Wnp
qlab. (9b)
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Similarly, one has for the relative np-momentum

plabnp = pc.m.

√

1 +

(
qc.m.

Md

)2

cos2 θ, (10a)

cos θlabnp =
Ec.m.
d√

M2
d + (qc.m.)2 cos2 θ

cos θ, (10b)

pc.m. = plabnp

√

1 +

(
qlab

Wnp

)2

cos2 θlabnp , (10c)

cos θ =
Elab
np√

W 2
np + (qlab)2 cos2 θlabnp

cos θlabnp . (10d)

In the c.m. frame, the nucleon energies are (neglecting the
small proton-neutron mass difference)

Ec.m.
p = Ec.m.

n = Ec.m. =
Wnp

2
=
√
M2 + (pc.m.)2, (11)

and their three-momenta are given by the relative np-
momentum

~p c.m.p = (pc.m., θ, φ), ~p c.m.n = (pc.m., π − θ, φ+ π). (12)

The same quantities in the lab frame may be expressed in
terms of the c.m. variables by

Elab
p/n =

Ec.m.
d

Md

(
Wnp

2
± qc.m. pc.m. cos θ

Ec.m.
d

)
, (13a)

(
plabp/n

)2
=

(
Ec.m.
d pc.m.

Md

)2

+
1

M2
d

(
(qc.m.)2

×
[
M2+(pc.m.)2cos2θ

]
±Ec.m.

d Wnpq
c.m.pc.m. cos θ

)
. (13b)

The Jacobian for the transformation Ωc.m.
np → Ωlab

i

(i ∈ {n, p}) is given by

∂Ωc.m.
np

∂Ωlab
i

=
1

γ

(
βlabi γlabi
βc.m.γc.m.

)3(
1+

β

βc.m.
cos θc.m.i

)−1

, (14)

where the angle θc.m.i or θlabi denotes the angle of the mo-
mentum of the particle “i” in the indicated frames of ref-

erence, and β =
√
γ2 − 1/γ. Furthermore,

γc.m. =
Ec.m.

M
, (15)

is the boost parameter that takes particle “i” from its rest
system to the c.m. frame. It is the same for both particles.
Similarly, for the boost from the particle rest frame to the
lab one has

γlabi = γ γc.m.
(
1 + β βc.m. cos θc.m.i

)
. (16)

Note the relations θc.m.p = θ, and θc.m.n = π− θ (see fig. 1).
Furthermore, the particle lab angle is given by

θlabi = arcsin

[
βc.m.γc.m.

βlabi γlabi
sin θc.m.i

]
. (17)

For the description of the polarization components of
the outgoing particle, one associates with each particle
“i” a frame of reference according to the Madison con-
vention, for which the z-axis is taken along the particle
momentum, i.e., in the reaction plane, the y-axis along
~q × ~pi, i.e., perpendicular to the reaction plane, and the
x-axis is then determined by the requirement to form a
right-handed system. Often the polarization components
are evaluated in the c.m. system whereas the experimental
measurement is done in the lab frame. Then it is neces-
sary to convert these observables to the laboratory sys-
tem. Applying nonrelativistic kinematics, the spin eigen-
states in either system are simply related by a rotation,
θc.m.i −θlabi about the y-axis. However, it is well known (cf.
refs. [11–13], for example) that for relativistic kinematics
there is a correction such that the actual angle of rotation,
the Thomas-Wigner angle θWi , is given by

θWi = arcsin

[
1 + γ

γc.m. + γlabi
sin
(
θc.m.i − θlabi

)]
. (18)

One readily observes that for nonrelativistic boosts the
Wigner angle becomes simply the θc.m.i −θlabi . Since the ro-
tation is about the y-axis, the y-components of the polar-
ization of the outgoing nucleons undergo no change while
the x- and z-components mix according to

P lab
k (i) = RW

kl (i)P
c.m.
l , i ∈ {p, n}, (19)

where

RW (i) =




cos θWi 0 sin θWi
0 1 0

− sin θWi 0 cos θWi


 . (20)

Similarly, double polarization observables transform as

P lab
kl = RW

kk′(p)R
W
ll′ (n)P

c.m.
k′l′ . (21)

2.2 Definition of observables

The most general form of an observable in deuteron elec-
trodisintegration is

O(ΩX) = PX S0

= tr
(
T †ΩXT ρi

)
, (22)

where

S0 =
d3σ0

dklab2 dΩlab
e dΩc.m.

np

(23)

denotes the unpolarized cross-section. ΩX is an operator
in the final two-nucleon spin space with PX as the cor-
responding polarization observable. Its specific form de-
pends on the analysis of the hadronic final state, i.e.,
whether or not polarization components of one or both
outgoing nucleons are measured, and is defined below.
Polarization analysis of the scattered electron is not con-
sidered here. T denotes the reaction matrix, and ρi the
density matrix for the spin degrees of the initial system.
The trace refers to all initial state spin degrees of freedom
comprising incoming electron and target deuteron.
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In the one-photon exchange approximation the reac-
tion matrix T separates into a leptonic and a hadronic
part, and one obtains from (22) the well-known expres-
sion

O(ΩX) = 3 c
(
klab1 , klab2

)
tr
(
T †ΩXTρi

)
, (24)

where the hadronic part is represented by the T -matrix
which is related to the current matrix element between
the initial deuteron state and the final np-scattering state.
The electron kinematics refers to the lab frame while the
T -matrix and all quantities of the final np-state refer ac-
cording to our choice to the final-state c.m. system. In (24)
the initial-state density matrix ρi refers now to the spin
degrees of the exchanged virtual photon and the deuteron,
i.e. the virtual photon polarizations λ (= 0, ±1) and
the deuteron spin projections λd with respect to a cho-
sen quantization axis, here parallel to ~q. Furthermore, the
kinematic factor in (24) is

c
(
klab1 , klab2

)
=

α

6π2
klab2

klab1 Q4
, (25)

with α denoting the fine structure constant and Q2 = −q2ν
the four-momentum transfer squared (q = k1 − k2). This
factor is related to the Mott cross-section σMott by

c
(
klab1 , klab2

)
=

1

6π2α

tan2(θlabe /2)

Q2
σMott ,

where

σMott =
α2

4 (Elab
1 )2

cos2(θlabe /2)

sin4(θlabe /2)
. (26)

The explicit form of the unpolarized cross-section in
terms of structure functions is given below in (53). The
spin degrees of the final state may be taken as s, the total
spin of the np-final state, and ms its projection on the
relative np-momentum ~pnp in the final np-c.m. system.
Another convenient choice are the helicities λp and λn of
proton and neutron, respectively.

Then the T -matrix of (24) between the initial deuteron
state |λd〉 and the final np-scattering state |m1m2〉, both
in noncovariant normalization, is given by

Tm1m2λλd(θ, φ) =

−π
√

2αpnpEc.m.Ec.m.
d /Md 〈m1m2|Jλ(~q )|λd〉 (27a)

= ei(λ+λd)φtm1m2λλd(θ), (27b)

where λ = 0, ±1, and the spherical angles of the rela-
tive momentum ~pnp of the final neutron-proton state in
the c.m. system are denoted by (θ, φ) as already defined
above. Here, J0(~q ) denotes the Fourier component of the
charge density operator and J±1(~q ) the Fourier compo-
nents of the transverse current density operator. Further-
more, (m1,m2) stands for the spin quantum numbers of
the final two-nucleon state, either in the standard (cou-
pled) representation (s,ms) of the total spin s of the
outgoing nucleons and its projection ms on the relative
momentum, or in the helicity (uncoupled) basis (λp, λn).

The transformation from one representation to the other
is simply given by a Clebsch-Gordan coefficient

tλpλnλλd =
∑

sms

(−)ms ŝ

(
1
2

1
2 s

λp λn −ms

)
tsmsλλd . (28)

In eq. (27a) noncovariant state normalization has been
assumed and the hadronic c.m. motion has been elimi-
nated already. Thus initial and final hadronic states refer
to the relative two-body motion in the hadronic rest frame.
Equation (27b) defines the reduced t-matrix. If parity is
conserved, it obeys the symmetry relation

ts−ms−λ−λd = (−)1+s+ms+λ+λd tsmsλλd , (29)

for the standard representation, and

t−λp−λn−λ−λd = (−)λp+λn+λ+λdtλpλnλλd , (30)

for the helicity representation. This relation reduces the
number of independent t-matrix elements to 18, six for
the longitudinal (λ = 0) and twelve for the transverse
(λ = ±1) matrix elements.

The initial-state density matrix ρi in (24) is a direct
product of the density matrices ργ of the virtual photon
and ρd of the deuteron

ρi = ργ ⊗ ρd. (31)

For the evaluation of ργ of the virtual photon, we allow
the incoming electrons to be partially longitudinally po-
larized of degree h. This restriction does not mean a loss of
generality because, as has been shown in [3], one obtains
already for this case the maximal number of linearly inde-
pendent observables. The virtual photon density matrix
can be split into an unpolarized and a polarized part

ργλλ′ = ρ0λλ′ + hρ′λλ′ , (32)

where ρ0 and ρ′ can be expanded in terms of independent
components ρα and ρ′α (α ∈ {L, T, LT, TT}) according
to the various combinations of longitudinal and transverse
polarization

ρ0λλ′ =
∑

α=L, T, LT, TT

δαλλ′ρα , (33a)

ρ′λλ′ =
∑

α=L, T, LT, TT

δ′αλλ′ρ
′
α , (33b)

with

δLλλ′ = δλλ′δλ0 , δLTλλ′ = λ′δλ0 + λδλ′0 ,

δTλλ′ = δλλ′ |λ|, δTTλλ′ = δλ,−λ′ |λ|,

δ′Lλλ′ = 0, δ′LTλλ′ = |λ′|δλ0 + |λ|δλ′0 ,

δ′Tλλ′ = δλλ′λ, δ′TTλλ′ = 0.

(34)

They obey the symmetries

δαλ′λ = δαλλ′ = (−)λ+λ′δα−λ′−λ , (35a)

δ′αλ′λ = δ′αλλ′ = (−)1+λ+λ′δ′α−λ′−λ . (35b)
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The independent components ρα and ρ′α are given by
the well-known expressions (note Q2 = −q2ν > 0)

ρL = ρ000 = β2Q2 ξ
2

2η
, ρT = ρ011 =

1

2
Q2

(
1 +

ξ

2η

)
,

ρLT =ρ001=βQ2 ξ

η

√
η + ξ

8
, ρTT =ρ0−11=−Q2 ξ

4η
, (36)

ρ′LT = ρ′01 =
1

2
β
Q2

√
2η

ξ, ρ′T = ρ′11 =
1

2
Q2

√
η + ξ

η
,

with

β =
q lab

q c
, ξ =

Q2

(q lab) 2
, η = tan2

(
θlabe
2

)
, (37)

where β expresses the boost from the lab system to the
frame in which the hadronic current is evaluated and ~q c

denotes the momentum transfer in this frame. If, as is
the case here, one calculates the observables in the final
np-c.m. system, one has ~q c = ~q c.m.. We further note the
simple relation to the often used parametrization of the
virtual photon density matrix in terms of the quantities
vα(′) of ref. [14] (for β = 1)

ρ(′)α =
Q2

2η
vα(′) , (38)

where α ∈ {L, T, LT, TT}.
Furthermore, the deuteron density matrix ρd can be

expressed in terms of irreducible spin operators τ [I] with
respect to the deuteron spin space

ρdλd λd′ =
1

3

∑

I M

(−)M Î 〈1λd|τ [I]M |1λ′d〉P d
I−M , (39)

where P d
00 = 1, and P d

1−M and P d
2−M describe vector and

tensor polarization components of the deuteron, respec-
tively. We use throughout the notation Î =

√
2I + 1. The

spin operators are defined by their reduced matrix ele-
ments

〈1||τ [I]||1〉 =
√
3 Î for I = 0, 1, 2. (40)

From now on we will assume that the deuteron density

matrix is diagonal with respect to an orientation axis ~d
having spherical angles (θd, φd) with respect to the coor-
dinate system associated with the scattering plane in the

lab frame (see fig. 1). Then one has with respect to ~d as
quantization axis

ρdmm′ = pm δmm′ , (41)

where pm denotes the probability for finding a deuteron
spin projection m on the orientation axis. With respect to

this axis one has P d
I M (~d ) = P d

I δM,0, where the orientation
parameters P d

I are related to the pm by

P d
I =

√
3 Î
∑

m

(−)1−m
(
1 1 I
m −m 0

)
pm

= δI,0 +

√
3

2
(p1 − p−1)δI,1 +

1√
2
(1− 3 p0)δI,2 . (42)

Table 1. Notation for the Cartesian components of the spin
observables and their division into sets A and B.

Observable 1 xp yp zp xn yn zn
Set A B A B B A B

Observable xpxn xpyn xpzn ypxn ypyn ypzn zpxn zpyn zpzn
Set A B A B A B A B A

The polarization components in the chosen lab frame are
obtained from the P d

I by a rotation

P d
IM (~z ) = P d

I e
iMφddIM0(θd), (43)

where djmm′ denotes a small rotation matrix [15]. Thus the
deuteron density matrix becomes finally

ρdλd λd′ =

1√
3
(−)1−λd

∑

I M

Î

(
1 1 I
λ′d −λd M

)
P d
I e

−iMφddIM0(θd). (44)

This means, the deuteron target is characterized by four
parameters, namely the vector and tensor polarizations
P d
1 and P d

2 , respectively, and by the orientation angles θd
and φd. Note that the deuteron density matrix undergoes
no change in the transformation from the lab to the c.m.
system, since the boost to the c.m. system is collinear with
the deuteron quantization axis [16].

Now we turn to the definition of the operator ΩX char-
acterizing the various observables. One has 16 independent
observables according to all combinations of the four oper-
ators (

�
2, ~σ) in the spin space of each of the two nucleons.

In detail, if no polarization analysis of the outgoing nucle-
ons is performed, one has

Ω1 = Ω00 = σ0(p)⊗ σ0(n), (45)

where we have defined σ0 =
�
2. If the polarization com-

ponent xi of the outgoing proton or neutron, respectively,
is measured, the corresponding operator is

Ωi0 = σi(p)⊗ σ0(n) or Ω0i = σ0(p)⊗ σi(n). (46)

Finally, the combined measurement of the polarization
components xi(p) and xj(n) of both final particles is rep-
resented by

Ωij = σi(p)⊗ σj(n). (47)

Thus each observable X is represented by a pair X =
(α′α) with α′, α = 0, . . . , 3 and related to the operator
Ωα′α = σα′(p) ⊗ σα(n). Since the T -matrix is calculated
in the np-c.m. system, the spin operators of both particles
refer to the same reference frame with z-axis parallel to
~pnp and y-axis along ~q × ~pnp, i.e., perpendicular to the
reaction plane. Thus the polarization components of the
proton are chosen according to the Madison convention

while for the neutron the y- and z-components of ~P have
to be reversed in order to comply with this convention.
The resulting observables are listed in table 1 and are
divided into two sets, called A and B, according to their
behaviour under a parity transformation [8].
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For real photons, the photon density matrix contains
transverse components only, and thus, in order to obtain
the corresponding observables in photodisintegration, one
has to make in (24) the replacements

ρL → 0, ρLT → 0, ρ′LT → 0,

c
(
klab1 , klab2

)
ρT → 1/6, h c

(
klab1 , klab2

)
ρ′T → −P γ

c /6, (48)

c
(
klab1 , klab2

)
ρTT → P γ

l /6,

where P γ
l and P γ

c denote the degree of linear and circular
photon polarization, respectively, and P γ

l < 0 means lin-
ear polarization along the x-axis while along the y-axis for
P γ
l > 0. Furthermore, P γ

c > 0 or P γ
c < 0 describe right-

or left-handed circular polarization, respectively.

2.3 Structure functions

For each observable X a set of structure functions is de-
fined as quadratic Hermitean forms of the t-matrix ele-
ments by

f IML (X) =
2

1 + δM0
<e
(
iδ̄
X
I U00IM

X

)
, (49a)

f IMT (X) =
4

1 + δM0
<e
(
iδ̄
X
I U11IM

X

)
, (49b)

f IM±
LT (X) =

4

1+δM0
<e
[
iδ̄
X
I

(
U01IM
X ±(−)I+M+δX,BU01I−M

X

)]
, (49c)

f IM±
TT (X) =

2

1+δM0
<e
[
iδ̄
X
I

(
U−11IM
X ±(−)I+M+δX,BU−11I−M

X

)]
, (49d)

f ′ IMT (X) =
4

1 + δM0
<e
(
i1+δ̄

X
I U11IM

X

)
, (49e)

f ′ IM±
LT (X) =

4

1+δM0
<e
[
i1+δ̄

X
I

(
U01IM
X ±(−)I+M+δX,BU01I−M

X

)]
. (49f)

Here δ̄XI is defined by

δ̄XI = (δX,B − δI1)
2,

with

δX,B :=

{
0 for X ∈ A
1 for X ∈ B

}
, (50)

distinguishing the two sets of observables A and B. In
the foregoing expressions, the U ’s are given as bilinear
Hermitean forms in the reduced t-matrix elements, i.e.,
for X = (α′α)

Uλ′λIMα′ α =
∑

m′

1m
′

2λ
′

d
m1m2λd

t∗m′

1m
′

2λ
′λ′
d

×〈m′
1m

′
2|σα′(p)σα(n)|m1m2〉

×tm1m2λλd〈λd|τ
[I]
M |λ′d〉. (51)

Although the U ’s are independent of the chosen represen-
tation for the matrix elements, their explicit form in terms

of the t-matrix elements depends certainly on the repre-
sentation for the initial and final spin states. We have
already mentioned that two conventions are in common
use, the helicity representation with spin quantum num-
bers (λp, λn) and the standard one with (s, ms). A third
representation called hybrid basis, where the quantization
axis is chosen perpendicular to the reaction plane, was
introduced in [9]. Explicit expressions are listed in the ap-
pendix A for the (s,ms)-representation. More general rep-
resentations, which are obtained by arbitrary rotations of
the quantization axes of initial and final spin states, are
considered in [6]. However, one should keep in mind that
the observables and thus the structure functions are inde-
pendent of the representation because they are defined as
traces over the spin degrees of freedom (see (24)).

Note that f00−α (X), f20−α (X) and f10+α (X) vanish
identically for X ∈ A and correspondingly f 00+α (X),
f20+α (X) and f10−α (X) for X ∈ B. For this reason, we
often use the notation fα(X), f10α (X) and f20α (X) instead
of f00±α (X), f10∓α (X) and f20±α (X), respectively.

The structure functions f
(′) IM(±)
α (X) (α ∈

{L, T, LT, TT}) (primed and unprimed structure

functions f
′ IM(±)
α (X) and f

IM(±)
α (X) are here referred

to collectively as f
(′)IM(±)
α (X)) contain the complete

information on the dynamical properties of the np-system
available in deuteron electrodisintegration. They are
functions of the np-angle θ, the relative np-energy Enp,
and the three-momentum transfer squared (qc.m.)2, all in
the c.m. system.

In terms of these structure functions a general observ-
able in d(e, e′N)N and d(e, e′np) is given by

O(ΩX) = c
(
klab1 , klab2

) 2∑

I=0

P d
I

I∑

M=0

×
{(

ρLf
IM
L (X) + ρT f

IM
T (X) + ρLT f

IM+
LT (X) cosφ

+ρTT f
IM+
TT (X) cos 2φ

)
cos

(
Mφ̃− δ̄XI

π

2

)

−
(
ρLT f

IM−
LT (X) sinφ+ ρTT f

IM−
TT (X) sin 2φ

)

× sin

(
Mφ̃− δ̄XI

π

2

)
+ h

[(
ρ′T f

′IM
T (X)

+ρ′LT f
′IM−
LT (X) cosφ

)
sin

(
Mφ̃− δ̄XI

π

2

)

+ρ′LT f
′IM+
LT (X) sinφ cos

(
Mφ̃−δ̄XI

π

2

)]}
dIM0(θd), (52)

where we have introduced φ̃ = φ − φd. In particular, one
obtains for X = 1 and P d

I = δI,0 the unpolarized cross-
section as

S0 = c
(
klab1 , klab2

)
(ρLfL + ρT fT

+ρLT fLT cosφ+ ρTT fTT cos 2φ), (53)

using as a shorthand fα = f00+α (1). One should remember
that the nucleon angles and polarization components refer
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Table 2. Listing of (IM)- and (IM±)-values of nonvanishing structure functions f
(′) IM
α (X) and f

(′) IM±
α (X), respectively.

fIML (X), f IMT (X) f ′IMT (X) f IM±

LT (X), f IM±

TT (X), f ′IM±

LT (X)
X ∈ A X ∈ B X ∈ A X ∈ B X ∈ A X ∈ B
00 10 10 00 00+ 10− 10+ 00−
11 11 11 11 11+ 11− 11+ 11−
20 21 21 20 20+ 21− 21+ 20−
21 22 22 21 21+ 22− 22+ 21−
22 22 22+ 22−

Table 3. Number of nonvanishing structure functions

f
(′) IM
α (X) and f

(′) IM±
α (X) for an observableX ∈ A orX ∈ B.

Set L T T ′ LT LT ′ TT Total
A 5 5 4 9 9 9 41
B 4 4 5 9 9 9 40

to the c.m. frame. The transformation to the lab frame is
described in sect. 2.1.

The possible (I, M)-values are listed in table 2 and
the total number of structure functions for each observ-
able X and each α are listed in table 3. As mentioned in
the introduction, one finds altogether a total number of
648 observables, each of which is a Hermitean form of the
t-matrix elements. However, since the t-matrix has only
n = 18 independent complex amplitudes, only n2 = 324
linearly independent Hermitean forms can exist. Indeed,
one finds n2 linear relations between the observables which
are presented in the next section. The remaining structure
functions are linearly independent so that indeed the max-
imal information can be obtained by using longitudinally
polarized electrons alone. Transverse polarization is not
necessary.

On the other hand, since each reaction matrix element
is in general a complex number, but one overall phase is
undetermined, a set of 2n−1 properly chosen observables
should suffice to determine completely all matrix elements.
This seeming contradiction is resolved by the observation
that the linearly independent observables are not com-
pletely independent of each other in a more general sense.
In fact, any bilinear form t∗j′tj can be expressed as a lin-

ear form in the observables (see [5] and also sect. 2.4),
and for these bilinear forms one can find exactly (n− 1)2

quadratic relations (see appendix B), thus reducing the
total number of independent observables just to the re-
quired number 2n − 1. Consequently, one can determine
all matrix elements from 2n − 1 properly chosen observ-
ables. However, one should keep in mind that the solution
is in general not unique but contains discrete ambiguities.
This is discussed in sect. 3.

To close this section, we will give for the transverse
structure functions (α ∈ {T, T ′, TT}) the correspon-
dence to the observables in photodisintegration derived
in [8]. The formal definition of observables is completely
analogous except for the fact that in photodisintegra-
tion only transverse current components contribute. Tak-
ing into account the slightly different definition of the
T -matrix (compare T of (27a) with the definition of T γ

in [17,18]), i.e.

Tm1m2λλd(θ, φ) =

√
Wnp qc.m.

Md
T γm1m2λλd

(θ, φ), (54)

one has the following relations at the photon point with
respect to the general form of an observable in photodis-
intgration as given in (14) and (15) of [8]

f IMT (X) = (−)δ̄XI 6Wnp q
c.m.

Md
P 0, IM
X

dσ

dΩnp
, (55a)

f ′ IMT (X) = −6Wnp q
c.m.

Md
P c, IM
X

dσ

dΩnp
, (55b)

f IM±
TT (X) = ∓(−)δ̄XI Wnp q

c.m.

Md

× 6

1+δM0

(
P l, IM
X ±(−)I+M+δX,BP l, I−M

X

) dσ

dΩnp
. (55c)

2.4 Linear relations between structure functions

As is shown in detail in [3], the derivation of linear rela-
tions among observables is based on the inversion of (51)
expressing any bilinear form t∗s′m′

sλ
′m′tsmsλm as a linear

superposition of observables. This inversion can be done
analytically (see [3]). In general one obtains two types of
relations among the structure functions of an observableX
and those of another observable X ′(X), uniquely related
to X. Explicitly, one finds as the first type of equations

g00(X) =

1

3
p(X)

(
ḡ00(X ′)−

√
2ḡ20(X ′)−

√
3ḡ22(X ′)

)
, (56a)

g11(X) = p(X)ḡ11(X ′), (56b)

g20(X) =

1

3
p(X)

(
−
√
2ḡ00(X ′)+2ḡ20(X ′)−

√
3

2
ḡ22(X ′)

)
, (56c)

g21(X) = p(X)ḡ21(X ′), (56d)

g22(X) = − 2√
3
p(X)

(
ḡ00(X ′) +

1√
2
ḡ20(X ′)

)
. (56e)

The second type of equations reads

h10(X) = − 1√
2
p(X)h̄22(X ′), (57a)

h11(X) = p(X)h̄21(X ′), (57b)

h21(X) = −p(X)h̄11(X ′), (57c)

h22(X) =
√
2p(X)h̄10(X ′), (57d)
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Table 4. Definition of X ′(X) and p(X).

X 1 xpxn xpzn yp xp xn zp zn
X ′(X) ypyn zpzn zpxn yn zpyn ypzn xpyn ypxn
p(X) 1 −1 1 1 −1 −1 1 1
Set A A A A B B B B

Table 5. Listing of structure functions gIM (X) and ḡI
′M′

(X ′)
for observables X, X ′ which fulfill the relations (56), and

of structure functions hIM (X) and h̄I
′M′

(X ′) for observ-
ables which fulfill the relations (57). The associated observable
X ′(X) is either listed in table 4 or can be obtained using (58).

X ∈ A [B]

g [h̄]IM (X) f IML fIM+
LT f ′ IM+

LT fIMT fIM+
TT

ḡ [h̄]I
′M′

(X ′) f I
′M′

L fI
′M′+

LT f ′ I
′M′+

LT −fI
′M′+

TT −fI
′M′

T

X ∈ B [A]

g [h]IM (X) f IM−

LT f ′ IM−

LT f ′ IMT fIM−

TT

ḡ [h̄]I
′M′

(X ′) f ′ I
′M′

−

LT −fI
′M′

−

LT fI
′M′

−

TT −f ′ I
′M′

T

where X ′(X) and p(X) are listed in table 4 for 8 observ-
ables. For the remaining other 8 observables, not listed in
table 4, one obtains X ′(X) from table 4 with the help of
the relation

X ′(X ′(X)) = X, (58)

and p(X) from the relation

p(X ′(X)) = (−)δX,B p(X). (59)

Table 5 shows which of these two types of relations holds
for a specific structure function, depending on whether X
belongs to an observable of set A or B. Which structure
functions are related to each other in these relations, i.e.,
gIM (X) to ḡI

′M ′

(X ′) and hIM (X) to h̄I
′M ′

(X ′), is also
listed in table 5.

At the end of this section, we will give two examples
of how to find the proper relation for a given structure
function of an observable X. As first example, we choose
the y-component of the neutron polarization, i.e. X =
yn belonging to set A. According to table 4 its structure
functions are related to the ones of the y-component of the
proton polarization. With the help of (58) and (59) one
finds X ′(yn) = yp and p(yn) = 1 and in view of table 5
the relations (56) apply, e.g.

f00L (yn) =
1

3

(
f00L (yp)−

√
2f20L (yp)−

√
3f22L (yp)

)
, (60)

f00T (yn) = −
1

3

(
f00TT (yp)−

√
2f20TT (yp)−

√
3f22TT (yp)

)
. (61)

For the second example we choose X = zp yn, belonging to
set B, and the structure function f 10L (zp yn). From table 4
with the help of (58) and (59) one finds X ′(zp yn) = xp
and p(zp yn) = 1. Furthermore, according to table 5 the
relation (57) applies, resulting, for example, in

f10L (zp yn) = −
1√
2
f22L (xp). (62)

Table 6. Listing of the matrix U j
lsµ.

l s µ = 1 2 3 4
j − 1 1 cos εj 0 − sin εj 0
j 0 0 1 0 0

j + 1 1 sin εj 0 cos εj 0
j 1 0 0 0 1

2.5 Multipole decomposition

A convenient parametrization of the angular dependence
of observables and structure functions is provided by
an expansion in terms of the small rotation matrices
djm′m [7,19–21]. Explicit expressions for deuteron electro-
disintegration have been derived recently in [10]. They fa-
cilitate the analysis of the contributions of the various
charge, electric, and magnetic transition multipole mo-
ments to the different structure functions. This expan-
sion is based on the multipole expansion of the t-matrix.
We take the outgoing np-state in the form of the Blatt-
Biedenharn convention [22]

|~p sms〉(−) =∑

µjmj l

l̂ (l0sms|jms) e
−iδjµ U j

lsµD
j
mjms

(R) |µjmj〉, (63)

where Dj
mjms

(R) denote the rotation matrices in the con-

vention of Rose [15] and µ = 1, . . . , 4 numbers the four
possible partial waves for a given total angular momen-
tum j > 0. For j = 0 one has only two partial waves. The
phase shifts are denoted by δjµ, and the matrix U j

lsµ is de-
termined by the mixing parameters εj as listed in table 6.

Furthermore, R = (0,−θ,−φ) rotates the chosen
quantization axis into the direction of the relative np-
momentum ~p. The partial waves

∣∣µjmj

〉
=
∑

l′s′

U j
l′s′µ

∣∣µ(l′s′)jmj

〉
(64)

are solutions of a system of coupled equations of NN -
scattering. In this convention, the t-matrix reads

tsmsλλd(θ) = (−)λ
√

1 + δλ0
∑

Lljmjµ

l̂

̂

×(1λdLλ|jmj)(l0sms|jms)OLλ(µjls) djmjms
(θ), (65)

with
OLλ(µjls) =

√
4π eiδ

j
µU j

ls,µN
L
λ (µj), (66)

and

NL
λ (µj) = δ|λ|1

(
EL(µj)+λML(µj)

)
+δλ0C

L(µj), (67)

where EL(µj), ML(µj) and CL(µj) denote the reduced
electric, magnetic and charge multipole matrix elements,
respectively, between the deuteron state and a final-state
partial wave |µj〉 in the Blatt-Biedenharn parametriza-
tion. Parity conservation implies the selection rules

(C/E)L(µj) = 0, for (−)L+j+µ = −1, (68a)

ML(µj) = 0, for (−)L+j+µ = 1, (68b)
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Table 7. Listing of the sets κX determining the summation
values κ in the multipole decomposition (73) of a structure
function for an observable X = (α′α).

α′ 0 3 0 3 1 0 2 0 3 1 3 2 1 2 1 2
α 0 0 3 3 0 1 0 2 1 3 2 3 1 1 2 2
κX {0} {−1, 1} {−2, 0, 2}

which leads to the relation

OL−λ(µjls) = (−)L+lOLλ(µjls). (69)

As is shown in detail in [10], one obtains for a structure
function the general multipole expansion according to the
expressions in (49) from the one of Uλ′λIMα′ α in (51) which
reads

Uλ′λIMα′ α =
∑

K,κ∈κX
Uλ

′λIM,Kκ
α′ α dKλ′−λ−M,κ(θ), (70)

where djm′m(θ) denotes the small d-function of the rotation
matrices.

The sets κX of the possible κ-values are listed in table 7
and the coefficients are given by

Uλ
′λIM,Kκ

α′ α = 4π i
δ
(2)

(α′,α)

∑

L′Lµ′j′µj

Cλ′λIMK(L′j′Lj)

×D̃Kκ
α′α(µ

′j′µj) ÑL′∗
λ′ (µ′j′) ÑL

λ (µj), (71)

where we have defined

δ
(k)
(α′,α) = δα′,k + δα,k , (72a)

and

Cλ′λIM,K(L′j′Lj) =

(−)λ′+L 2
√

3 (1 + δλ′0)(1 + δλ0) ̂
′ ̂ Î K̂2

×
∑

J

Ĵ2

(
J I K

λ− λ′ M λ′ − λ−M

)

×
(
L′ L J
λ′ −λ λ− λ′

)

j′ j K
L′ L J
1 1 I



 , (72b)

D̃Kκ
α′α(µ

′j′µj) =

(−i)δ
(2)

(α′,α)

∑

l′s′ls

DKκ
α′α(j

′l′s′jls)U j′

l′s′,µ′ U
j
ls,µ (72c)

with

DKκ
α′α(j

′l′s′jls) =

(−)l+s′+s l̂′ l̂ ŝ′ ŝ
∑

τ ′ν′τν

(−)τ ′+τ τ̂ ′ τ̂ sτ ′ν′α′ sτνα

×
[
∑

S

Ŝ2

(
τ ′ τ S
ν′ ν −κ

)




1
2

1
2 τ

′

1
2

1
2 τ

s′ s S





×
[
∑

K′

K̂ ′ 2
(
S K K ′

κ −κ 0

)(
K ′ l l′

0 0 0

)

S K K ′

s j l
s′ j′ l′





]]
. (72d)

Table 8. Listing of the values of β(α) in the multipole decom-
position (73).

α L/T LT TT
β(α) 0 1 2

The definition of sτνα is given in (A.3) of appendix A. Fur-
thermore, in (71) we have incorporated the phase shift for

convenience into the quantity ÑL
λ (µj) = eiδ

j
µ NL

λ (µj).
Then, the general multipole decomposition reads

f (′) IM(±)
α (X) =∑

K,κ∈κX
f (′) IM(±), K κ
α (X) dK−M−β(α),κ(θ), (73)

where β(α) is listed in table 8 and the coefficients

f
(′) IM(±), K κ
α (X) are obtained via (49) from the foregoing
multipole expansion. In detail one has for the longitudinal
and transverse structure functions of an observable X

f IM,Kκ
L (X) =

∑

L′µ′j′Lµj

C̃ IM,K
L (L′j′Lj) D̃Kκ

α′α(µ
′j′µj)

×<e
(
i
δ̄XI +δ

(2)

(α′,α)C̃L′∗(µ′j′) C̃L(µj)
)
, (74a)

f IM,Kκ
T (X) =

∑

L′µ′j′Lµj

C̃ IM,K
T (L′j′Lj) D̃Kκ

α′α(µ
′j′µj)

×<e
(
i
δ̄XI +δ

(2)

(α′,α)ÑL′∗
1 (µ′j′) ÑL

1 (µj)
)
, (74b)

f ′ IM,Kκ
T (X) =

−
∑

L′µ′j′Lµj

C̃ IM,K
T (L′j′Lj) D̃Kκ

α′α(µ
′j′µj)

×=m
(
i
δ̄XI +δ

(2)

(α′,α)ÑL′∗
1 (µ′j′) ÑL

1 (µj)
)
, (74c)

and for the interference ones, distinguishing observables
of type A

f IM±, Kκ
TT (X) =

∑

L′µ′j′Lµj

C̃ IM±,K
TT (L′j′Lj) D̃Kκ

α′α(µ
′j′µj)

×<e
(
i
δ̄XI +δ

(2)

(α′,α)ÑL′∗
−1 (µ′j′) ÑL

1 (µj)
)
, (75a)

f IM±, Kκ
LT (X) =

∑

L′µ′j′Lµj

C̃ IM±,K
LT (L′j′Lj) D̃Kκ

α′α(µ
′j′µj)

×<e
(
i
δ̄XI +δ

(2)

(α′,α)C̃L′∗(µ′j′) ÑL
1 (µj)

)
, (75b)

f ′ IM±, Kκ
LT (X) =

−
∑

L′µ′j′Lµj

C̃ IM±,K
LT (L′j′Lj) D̃Kκ

α′α(µ
′j′µj)

×=m
(
i
δ̄XI +δ

(2)

(α′,α)C̃L′∗(µ′j′) ÑL
1 (µj)

)
, (75c)
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and observables of type B

f IM±, Kκ
TT (X) =

∑

L′µ′j′Lµj

C̃ IM∓,K
TT (L′j′Lj) D̃Kκ

α′α(µ
′j′µj)

×<e
(
i
δ̄XI +δ

(2)

(α′,α)ÑL′∗
−1 (µ′j′) ÑL

1 (µj)
)
, (76a)

f IM±, Kκ
LT (X) =

∑

L′µ′j′Lµj

C̃ IM∓,K
LT (L′j′Lj) D̃Kκ

α′α(µ
′j′µj)

×<e
(
i
δ̄XI +δ

(2)

(α′,α)C̃L′∗(µ′j′) ÑL
1 (µj)

)
, (76b)

f ′ IM±, Kκ
LT (X) =

−
∑

L′µ′j′Lµj

C̃ IM∓,K
LT (L′j′Lj) D̃Kκ

α′α(µ
′j′µj)

×=m
(
i
δ̄XI +δ

(2)

(α′,α)C̃L′∗(µ′j′) ÑL
1 (µj)

)
. (76c)

Here, the coefficients C̃α are defined by

C̃ IM,K
L (L′j′Lj) =

8π

1 + δM0
C00IM,K(L′j′Lj), (77a)

C̃ IM,K
T (L′j′Lj) =

16π

1 + δM0
C11IM,K(L′j′Lj), (77b)

C̃ IM±,K
LT (L′j′Lj) =

16π

1 + δM0

(
C01IM,K(L′j′Lj)

±(−)I+MC01I−M,K(L′j′Lj)
)
, (77c)

C̃ IM±,K
TT (L′j′Lj) =

8π

1 + δM0

(
C−11IM,K(L′j′Lj)

±(−)I+MC−11I−M,K(L′j′Lj)
)
. (77d)

More detailed expressions for the coefficients of the
structure functions of the differential cross-section are
listed in appendix C. Explicit results for the coefficients

C̃ and D̃ for a maximal multipolarity Lmax = 3 may be
found in [10].

2.6 Inclusive process and form factors

The inclusive cross-section is obtained by integration over
the solid angle Ωc.m.

np = (θ, φ) yielding

dσ

dklab2 dΩlab
e

=

6 c
(
klab1 , klab2

) {
ρLFL + ρTFT − P d

1 ρLTF
1−1
LT

× sinφdd
1
10(θd) + P d

2

[(
ρLF

20
L + ρTF

20
T

)
d200(θd)

−ρLTF 2−1
LT cosφdd

2
10(θd) + ρTTF

2−2
TT cos 2φdd

2
20(θd)

]

+hP d
1

[
− ρ′TF

′10
T d100(θd) + ρ′LTF

′1−1
LT cosφdd

1
10(θd)

]

−hP d
2 ρ

′
LTF

′2−1
LT sinφdd

2
10(θd)

}

≡ σ
(
h, P d

1 , P
d
2

)
. (78)

It is governed by a set of inclusive form factors F
(′)I−M
α

(M ≥ 0) as given by

F (′)I−M
α =

(−)I+M (1+δM0)
π

6

∫
d(cos θ)

(
f (′)IM+
α −f (′)IM−

α

)
, (79)

for α ∈ {L, T, LT, TT}. This equation corresponds to
eqs. (13) and (14) of [1] except for the fact that the primed
form factors F ′ 10

T and F ′ 1−1
LT differ in sign from the ones

given in [1] due to a redefinition of the primed structure
functions incorporating a phase factor (−)I (see the re-
mark in [4] before eq. (9)). Altogether, the inclusive cross-
section depends on ten form factors: FL, FT , F

1−1
LT , F 20

L ,

F 20
T , F 2−1

LT , F 2−2
TT , F ′ 10

T , F ′ 1−1
LT , and F ′ 2−1

LT , of which F 1−1
LT

and F ′ 2−1
LT vanish below pion threshold due to time rever-

sal invariance.
The multipole decomposition of the inclusive form fac-

tors are given by the (K = 0) coefficients of the multi-
pole expansion of the structure functions of the differential
cross-section (X = 1 = (0, 0)), as listed in (73), i.e.

F (′)I−M
α =(−)I+M (1+δM0)

π

3

(
f (′)IM+,0
α −f (′)IM−,0

α

)
. (80)

Explicit expressions are listed in appendix C.
At the photon point one can relate the purely trans-

verse form factors to the total photoabsorption cross-
section σtot of deuteron photodisintegration for unpolar-
ized photons and deuterons and to the corresponding
beam and target asymmetries of the total cross-section
as defined in [18]. Taking into account the relations (55)
one obtains, respectively,

σtot =
Md

Wnp qc.m.
FT , τ020 =

F 20
T

FT
,

τ c10 =
F ′ 10
T

FT
, τ l22 =

F 2−2
TT

FT
, (81)

where Wnp and qc.m. denote the invariant mass of the np
system and the photon c.m. momentum, respectively.

3 Separation of structure functions and

complete sets

3.1 Experimental separation of structure functions

The experimental separation of structure functions has
been discussed in detail in [2,4]. It is based on the general
definition of asymmetries of a polarization observable with
respect to the beam and target polarization parameters h,
P d
1 , and P

d
2 , respectively. To this end one writes a general

polarization observable O(ΩX) as given in (24) and (52)
in the form

PX = A0(X) + P d
1 A

V
d (X) + P d

2 A
T
d (X)

+h
[
Ae(X) + P d

1 A
V
ed(X) + P d

2 A
T
ed(X)

]
, (82)

defining implicitly the various asymmetries, i.e. Ae(X)
for beam polarization, AV

d (X) and AT
d (X) for vector and
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tensor target polarization, respectively, and AV
ed(X) and

AT
ed(X) for the corresponding beam-target asymmetries.

Their explicit form can be read from (52)

A0(X) =
c(klab1 , klab2 )

S0

[(
ρLf

00
L (X) + ρT f

00
T (X)

+ρLT f
00+
LT (X) cosφ+ ρTT f

00+
TT (X) cos 2φ

)
δX,A

+
(
ρLT f

00−
LT (X) sinφ+ ρTT f

00−
TT (X) sin 2φ

)
δX,B

]
, (83a)

AV
d (X) =

c(klab1 , klab2 )

S0

1∑

M=0

×
[(
ρLf

1M
L (X) + ρT f

1M
T (X) + ρLT f

1M+
LT (X) cosφ

+ρTT f
1M+
TT (X) cos 2φ

)
cos

(
Mφ̃− δX,A

π

2

)

−
(
ρLT f

1M−
LT (X) sinφ+ ρTT f

1M−
TT (X) sin 2φ

)

× sin

(
Mφ̃− δX,A

π

2

)]
d1M0(θd), (83b)

AT
d (X) =

c(klab1 , klab2 )

S0

2∑

M=0

×
[(
ρLf

2M
L (X) + ρT f

2M
T (X) + ρLT f

2M+
LT (X) cosφ

+ρTT f
2M+
TT (X) cos 2φ

)
cos

(
Mφ̃− δX,B

π

2

)

−
(
ρLT f

2M−
LT (X) sinφ+ ρTT f

2M−
TT (X) sin 2φ

)

× sin

(
Mφ̃− δX,B

π

2

)]
d2M0(θd), (83c)

Ae(X) =
c(klab1 , klab2 )

S0

×
[
−
(
ρ′T f

′ 00
T (X) + ρ′LT f

′ 00−
LT (X) cosφ

)
δX,B

+ρ′LT f
′ 00+
LT (X) sinφδX,A

]
, (83d)

AV
ed(X) =

c(klab1 , klab2 )

S0

×
1∑

M=0

[(
ρ′T f

′ 1M
T (X) + ρ′LT f

′ 1M−
LT (X) cosφ

)

× sin

(
Mφ̃− δX,A

π

2

)
+ ρ′LT f

′ 1M+
LT (X) sinφ

× cos

(
Mφ̃− δX,A

π

2

)]
d1M0(θd), (83e)

AT
ed(X) =

c(klab1 , klab2 )

S0

×
2∑

M=0

[(
ρ′T f

′ 2M
T (X) + ρ′LT f

′ 2M−
LT (X) cosφ

)

× sin

(
Mφ̃− δX,B

π

2

)
+ ρ′LT f

′ 2M+
LT (X) sinφ

× cos

(
Mφ̃− δX,B

π

2

)]
d2M0(θd), (83f)

where the unpolarized differential cross-section S0 is de-
fined in (53). For simplicity, we will also call A0(X) an
asymmetry although it is not one in the strict sense. The
nonvanishing structure functions contributing to an asym-
metry of a given observable are listed in table 2. For the
differential cross-section (X = 1 = (00)) we remind the
reader that one has with respect to the notation in [2,23]

A0(1) = 1, A
V/T
d (1) = A

V/T
d ,

Ae(1) = Ae , A
V/T
ed (1) = A

V/T
ed . (84)

For the simplest case, namely in the absence of
beam and target polarization, the four structure func-
tions fα(X) can be separated choosing first different φ-
angles, yielding fLT , fTT and a linear superposition of fL
and fT and subsequently a Rosenbluth separation for dis-
entangling fL and fT . In the general case, by a proper
variation of the longitudinal electron polarization h and
the deuteron vector and tensor polarization parameters
P d
1 and P d

2 , respectively, one can first separate the vari-
ous beam, target and beam-target asymmetries as listed
in (83). These asymmetries are functions of the deuteron

orientation angles θd and φd, viz. φ̃ = φ − φd, and the
azimuthal or out-of-plane angle φ. One can now utilize
these variables for the further separation of the different
structure functions.

This is achieved by observing that the general func-
tional form of an asymmetry is

AI
(
φ, φ̃, θd

)
=

I∑

M=0

αIM
(
φ, φ̃

)
dIM0(θd), (I = 0, 1, 2), (85)

where

αIM
(
φ, φ̃

)
= cIM (φ) cosMφ̃+ sIM (φ) sinMφ̃, (86)

and the φ-dependent functions cIM (φ) and sIM (φ) have
either the form

a0 + a1 cosφ+ a2 cos 2φ (87a)

or
b1 sinφ+ b2 sin 2φ. (87b)

For a given I the M -components αIM (φ, φ̃) of the asym-

metry AI(φ, φ̃, θd) can be separated by a proper choice of
θd exploiting the properties of the small dIM0-functions.
For I = 1 (vector asymmetries), taking θd = 0 or π/2,

i.e. d1M0(0) = δM0 or d1M0(π/2) = M/
√
2, yields α10 or

α11, respectively, and for the tensor asymmetries (I = 2)
one may first choose θd = 0 yielding with d2M0(0) = δM0

directly α20. The latter being determined, then setting
θd = π/4 and π/2, one can obtain the remaining two terms
α21 and α22. For the separation of α21 and α22 one can
also choose θd = θ0d = arcos (1/

√
3) together with φ̃ and

φ̃ + π. Then the sum and difference of the corresponding
asymmetries result in α21 and α22, respectively.

In the next step, in order to separate the two contri-
butions cIM and sIM in (86), one can take first φ̃ = 0
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giving cIM and then φ̃ = π/2M for M 6= 0 which
yields directly sIM . The remaining separation of the co-
efficients an or bn in (87) is then achieved by appropriate
choices of φ. In a few cases the constant term a0 in (87a)
will contain two structure functions in the combination
ρLf

IM
L (X) + ρT f

IM
T (X). In this case one needs a Rosen-

bluth separation in addition.
A different task than the complete separation of all

structure functions is to find an optimal way for sepa-

rating a specific structure function f
IM(±)
α (X) (I > 0)

or f
′ IM(±)
α (X). In other words, the question is: what is

the minimal number of measurements necessary for the
separation of a specific structure function? This has been
discussed in [4] and is described in detail in appendix D.

3.2 Complete sets of observables

We have already mentioned the fact that in deuteron elec-
trodisintegration the total number of independent com-
plex t-matrix elements is 18, while for photodisintegration
the number is 12. Since one phase remains arbitrary this
means that this process is determined by 35 independent
observables, whereas in the corresponding photoreaction
one needs 23. The question is how to choose from the much
larger set of 324 (or 144 in photodisintegration) linearly
independent observables an appropriate set of 35 (or 23).
In [5] we had derived a general criterion which allows one
to decide uniquely whether for a reaction with n indepen-
dent t-matrix elements a set of 2n− 1 observables, taken
from the set of n2 linearly independent observables, con-
stitutes a complete set. Subsequently, this criterion has
been applied to deuteron electro- and photodisintegration
in [6]. A brief review of the main results of [5] and [6] is
appropriate.

3.2.1 General criterion [5]

Any observable in a reaction with n independent, com-
plex matrix elements can be represented by a n× n Her-
mitean form fα in the complex n-dimensional variable
z = (z1, . . . , zn)

fα(z) =
1

2

∑

j′j

z∗j′F
α
j′jzj , (88)

where Hermiticity requires

(
Fα
j′j

)∗
= Fα

jj′ , (89)

and z comprises all independent reaction matrix elements
labeled by j.

For the application of our criterion, derived in [5], one
first has to rewrite the Hermitean form in (88) into a real
quadratic form by introducing

z = x+ iy, (90)

Fα = Aα + i Bα, (91)

where Aα and Bα are real matrices, and Aα is symmetric
whereas Bα is antisymmetric. Considering further the fact
that one overall phase is arbitrary, one may choose yj0 = 0
for an arbitrary index j0 and then one finds for the given
observable

fα(x+ iy) =

1

2

[
∑

j′j

xj′A
α
j′jxj+

∑

j̃′ j̃

yj′A
α
j′jyj+2

∑

j̃′j

yj′B
α
j′jxj

]
, (92)

where the tilde over a summation index indicates that the
index j0 has to be left out. Introducing now a (m = 2n−1)-
dimensional real vector u by

u = (x1, . . . , xn, y1, . . . , yj0−1, yj0+1, . . . , yn), (93)

one can represent the n× n Hermitean form by a m×m
real quadratic form

f̃α(u) =
1

2

m∑

l′l=1

ul′ F̃
α
l′lul , (94)

where the m×m-matrix F̃α is given by

F̃α =

(
Aα

(
B̃α
)T

B̃α Âα

)
. (95)

Here B̃α is obtained from Bα by canceling the j0-th row,

and Âα from Aα by canceling the j0-th row and column.

Thus, B̃α is a (n−1)×n-matrix and Âα a (n−1)×(n−1)-
matrix.

Now, for checking the completeness of a chosen set
of 2n − 1 observables one has to construct the m × m
corresponding matrices F̃α, and then one builds from their
columns for all possible sets {k1, . . . , km; kα ∈ {1, . . . ,m}}
the matrices

W̃ (k1, . . . , km) =



F̃ 1
1k1

· · · F̃m
1km

...
...

F̃ 1
mk1

· · · F̃m
mkm


 . (96)

Note that the kα need not be different. If at least one of

the determinants of W̃ (k1, . . . , km) is nonvanishing then
one has a complete set.

3.2.2 Complete sets for photo- and electrodisintegration [6]

In order to apply our criterion, one has to construct the

matrices F̃ which represent the structure functions as Her-
mitean forms in the reaction matrix elements as

f (′) IM±
α (X) = t† F̃ (′) IM±, α t, (97)

where t is a vector comprising all reduced t-matrix ele-
ments in a certain labeling. It is convenient to arrange the
labeling of the t-matrix elements in such a way that the



160 The European Physical Journal A

longitudinal ones belong to j = 1, . . . , 6 and the transverse
ones to j = 7, . . . , 18. Thus, the general structure of these
matrices then is

F̃ (′) IM±, α =

(
A(′) IM±, α C(′) IM±, α
(
C(′) IM±, α)† B(′) IM±, α

)
, (98)

where A(′) IM±, α is a (6×6)-matrix, C(′) IM±, α a (6×12)-
matrix, and B(′) IM±, α a (12× 12)-matrix. In particular,
one has

F̃ IM±, L =

(
AIM±, L 0

0 0

)
, (99a)

F̃ (′) IM±, T/TT =

(
0 0
0 B(′) IM±, T/TT

)
, (99b)

F̃ (′) IM±, LT =

(
0 C(′) IM±, LT

(
C(′) IM±, LT )† 0

)
. (99c)

The explicit forms of these matrices are obtained from the
matrix representation of

Uλ′λIMX =
∑

j′j

t∗j′C̃
IMλ′λ
j′j (X)tj . (100)

Comparison with (51) gives for the matrix elements

C̃IMλ′λ
j′j (X) =

〈m′
1m

′
2|σα′(p)σα(n)|m1m2〉〈λd|τ [I]M |λ′d〉, (101)

where the labeling is to be understood as

j(′) = (m
(′)
1 ,m

(′)
2 , λ(′), λ(′)d ). Detailed expressions of

the C̃IMλ′λ(X)’s for several representations are easily
obtained from the expressions listed in appendix E (see
also [6]).

The structure of these matrices is such that the lon-
gitudinal (L) and the transverse (T, TT ) observables are
decoupled filling separated 6× 6 and 12× 12 submatrices,
respectively, whereas the LT -type observables are repre-
sented by 18 × 18 matrices. These features offer various
kinds of strategies for selecting complete sets.

i) One may independently select complete sets of observ-
ables for the longitudinal and transverse cases, i.e.,
a set of 11 longitudinal and 23 transverse structure
functions for a check of completeness. With respect to
the latter, one has in view of the linear relations be-
tween the T - and the TT+-type and between the T ′-
and TT−-type observables, different choices, taking ei-
ther T - and T ′-type or TT±-type observables or even
mixing different types of observables. The missing rel-
ative phase between the longitudinal and transverse
t-matrix elements can then be provided by any one of
the LT -observables. The advantage of this approach is
that in this way one automatically obtains complete
sets of observables for the case of photodisintegration
as well, namely from the transverse ones.

ii) Again one may start with a selection of 11 longitu-
dinal structure functions. But then instead of choos-
ing transverse observables, one may directly choose 24

linearly independent LT -type observables which then
constitute a simple system of linear equations for the
missing transverse matrix elements, because the longi-
tudinal ones are then known from the first step.

iii) Complementary to case ii) one may start with a se-
lection of 23 transverse observables taking one of the
alternatives listed in i). Then a proper set of 12 LT -
type observables provides a set of linear equations from
which the missing longitudinal t-matrix elements can
be obtained.

iv) Another alternative would be a selection of 35 struc-
ture functions of LT -type. However, in this case the
completeness check would be much more involved due
to the considerably higher dimension of the determi-
nants to be checked.

Which of these strategies is most advantageous will de-
pend on the experimental conditions. Often L- and T -type
structure functions are easier to determine in an experi-
ment although the required Rosenbluth separation intro-
duces some unwanted complication. In view of the fact
that the strategies i) through iii) require the determina-
tion of either L- or T -type observables or both, we have
considered in [5,6] exclusively the question of complete
sets for longitudinal and transverse structure functions.

The choice of complete sets of longitudinal structure
functions, containing eleven structure functions, from a
set of linearly independent ones has been discussed in
detail in [5]. It turned out, that there is only a very
weak restriction on the choice of possible complete lon-
gitudinal sets. In fact one may select from the chosen
set of 36 linearly independent observables any subset of
eleven structure functions, which does not contain more
than eight of the type X10 and X22. This has been dis-
cussed explicitly for the linearly independent set X ∈
{1IM , xxIM , xzIM , yIM1 , xIM1 , xIM2 , zIM1 , zIM2 }, and possi-
ble complete sets are listed in tables 3 and 4 of [5]. The
case of the transverse observables for which a complete set
contains 23 structure functions, has been discussed in [6].
Again with respect to the general question of a choice of
a complete set of structure functions, we found the gen-
eral statement, that one may pick from the chosen set of
144 linearly independent ones any subset of 23 structure
functions with the only restriction, that not more than 16
should be of the type X(′) 10 and X(′) 22.

In ref. [5] we furthermore simulated an experimental
study for the determination of the longitudinal t-matrix el-
ements in the helicity basis from a given set of “measured”
observables whose numerical values were taken from a cal-
culation. Various complete sets were selected and the aris-
ing system of 11 nonlinear equations for the t-matrix ele-
ments was solved numerically. Since the solutions were not
unique we had to calculate additional observables, called
“check observables”, taking as input the obtained solu-
tions for the t-matrix elements, and compared them to
their “measured” values. For the arbitrarily chosen kine-
matics (internal excitation energy Enp = 100MeV, mo-
mentum transfer (qc.m.)2 = 5 fm−2, various np-angles θ)
we found that one of the considered complete sets was
particularly suitable (first set of table 6 in ref. [5]). In
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this case only one additional check observable (f 10L (x2))
was sufficient to determine the correct solution. In [6] this
simulation was extended to a somewhat more realistic ex-
perimental situation using the same kinematics again and
taking the same specific set but allowing for errors in the
measured observables. The simulation of an experimental
situation showed that one can get quite reliable results
for the t-matrix elements even if experimental errors are
taken into account. The results can be greatly improved if
additional check observables are considered. For the case
studied in [6], it was sufficient to consider two such ob-
servables. If on the other hand one uses no check observ-
ables at all, one gets rather unreliable results since other
types of solutions of the nonlinear system of equations are
mixed in. In fact, performing such a simulation without
any check observable leads to large errors in the resulting
t-matrix elements (average error more than 100%) and
also to strong average deviations of the mean values from
the true values of the t-matrix elements (about 50%).

A similar study has been performed in [6] for the deter-
mination of the transverse t-matrix elements from observ-
ables, but without introducing experimental errors. Al-
though the transverse case is much more complicated than
the longitudinal one due to the higher dimensionality (12
instead of 6 complex t-matrix elements), it was found that
in principle the method works also for the transverse case.

3.3 Analytic expressions of the t-matrix elements in
terms of observables

One can also derive an analytic solution of the reaction
matrix elements in terms of observables, because one can
express all bilinear forms t∗j′tj as linear forms in the struc-

ture functions f
(′)IM±
α (X), i.e.,

t∗j′tj = Tj′j
[
f (′)IM±
α (X)

]
=

∑

αIM,sig=±

×
(
TαIMsig
j′j f IMsig

α (X) + T ′αIMsig
j′j f ′IMsig

α (X)
)
, (102)

where the explicitly appearing structure functions

f
(′)IM±
α (X) constitute a complete, linearly independent
set. Here the square bracket of Tj′j [f ] indicates the func-
tional dependence on the structure functions. This relation
has also been used in the derivation of the linear relations
between observables (see sect. 2.4). Explicit expressions

for the coefficients T
(′)αIMsig
j′j are derived in various rep-

resentations in [6]. To give an example, we list here two
cases, a diagonal and an interference term, of the longitu-
dinal t-matrix elements in a rotated helicity basis, where
the final helicity states are rotated into the y-axis,

t∗1
2

1
200

t 1
2

1
2 00

=

1

6

(
f00L −

√
2 f20L + f00L (y1)−

√
2 f20L (y1)

)
, (103a)

t∗− 1
2− 1

200
t 1

2
1
200

=
1

6

(
− f00L (zz)

+
√
2 f20L (zz) + i

(
f00L (xz)−

√
2 f20L (xz)

))
. (103b)

For a complete listing and further details we refer to ap-
pendix E of [6].

The linear relations in (102) can be exploited in var-
ious ways. One possibility is to choose a specific matrix
element, say tj0 , as real and positive. Then all other ma-
trix elements tj with j 6= j0 are uniquely determined rel-
ative to tj0 and are given as linear forms of appropriate
structure functions [8]

tj =
1

tj0
Tj0j

[
f (′)IM±
α (X)

]
. (104)

Finally, for the determination of the missing matrix ele-
ment tj0 one has to choose only one additional structure
function, say

f0 =
∑

j′j

t∗j′ F̃j′jtj , (105)

yielding

tj0 =
1√
f0

×
√∑

j′j

Tj′j0
[
f
(′)IM±
α (X)

]
F̃j′jTj0j

[
f
(′)IM±
α (X)

]
. (106)

Thus (104) in conjunction with (106) constitutes a non-

linear functional in the structure functions f
(′)IM±
α (X).

However, proceeding in this way, one needs in general a
much larger number of observables for the complete de-
termination of the t-matrix than the required minimal
number of 2n − 1 of a complete set of a n-dimensional
t-matrix.

Another strategy, which leads in general to a smaller
number of necessary observables, has been developed
in [6]. It is based on an analysis of all interference terms
with respect to the question, which and how many observ-
ables appear in the representation of an interference term
by observables. Because a closer inspection of the explicit
expressions reveals, that in general the interference terms
can be divided into disjunct subgroups which are deter-
mined by a subgroup of observables. In order to visualize
this grouping we have devised in [6] a graphical representa-
tion. To this end one assembles the numbers “1” through
“n”, where n denotes the number of t-matrix elements,
by points on a circle and represents an interference term
t∗j′tj by a straight line joining the points “j” and “j ′”. In-
terference terms belonging to the same subgroup are then
represented by the same type of lines. An example for the
longitudinal matrix elements in the helicity basis is shown
in fig. 2.

We will call a set of interference terms connected if they
generate a pattern of connected lines so that any point
belonging to one of the considered interference terms is
connected to any other point of the set either directly or
via k other intermediate points of that set. For example,
in fig. 2(a) one notes three disconnected lines, (b) and (d)
contain two different groups of connected lines, whereas
(c) contains one connected group of four lines. In such a
connected set, any matrix element tj′ can be expressed in



162 The European Physical Journal A

(c)

1

6

5

4

3

2

(a)

1

6

5

4

2

3

(b)

1

2

35

6

4(d)

1

2

3

4

5

6

Fig. 2. Diagrammatic representation of groups of longitudinal
observables determining the interference terms of t-matrix el-
ements for the helicity basis. The nomenclature for the groups
and the corresponding observables are listed in table 9

.

Table 9. Nomenclature for the diagrammatic representation
of groups of longitudinal observables in fig. 2 determining the
interference terms of t-matrix elements for the helicity basis,
where f IML (X) is represented by XIM .

Panel Line type Observables

(a) solid x10
1 , x22

2 , y00
1 , y20

1 , xz00, xz20

(b) solid 111, 121, z11
1 , z11

2 , z21
1 , z21

2 , zz11, zz21

(c) solid 122, z22
1 , z22

2 , zz22

dashed x10
2 , x22

1 , y22
1 , xz22

(d) solid x11
1 , x11

2 , x21
1 , x21

2 , y11
1 , y21

1 , xz11, xz21

terms of any other matrix element tj of that set by one of
the two forms

tj′=





Tj1j′

Tj1j2

Tj3j2
Tj3j4

· · · Tjk−2jk−3

Tjk−2jk−1

Tjkjk−1

Tjkj
tj , for k odd,

Tj1j′

Tj1j2

Tj3j2
Tj3j4

· · · Tjk−3jk−4

Tjk−3jk−2

Tjk−1jk−2

Tjk−1jk

Tjjk
t∗
j

, for k even,

(107)
depending on whether the number k of intermediate points
connecting j′ with j via the points j1 through jk is odd
or even. The proof of these equations is simple and given
in [6].

A special feature of the evolving geometric pattern is
a closed loop, see, e.g., fig. 2(c). If such a closed loop has
an even number of points then one finds from (107) for
j′ = j and k odd the following condition:

Tjkjk−1
Tjk−2jk−3

· · ·Tj3j2Tj1j =
Tj1j2Tj3j4 · · ·Tjk−2jk−1

Tjkj , (108)

which means that in such a closed loop any interference
term is completely determined by the other remaining in-
terference terms of that loop. This condition thus consti-
tutes a complex relation between the participating observ-
ables which allows one to eliminate two observables. On

the other hand, a closed loop through an odd number of
points (107) yields for j′ = j and k even

TjjkTjk−1jk−2
· · ·Tj3j2Tj1j =

TjjTj1j2Tj3j4 · · ·Tjk−3jk−2
Tjk−1jk , (109)

which again allows the elimination of two observables.
It means furthermore that the modulus of each of the
participating t-matrix elements is completely determined,
namely one has

∣∣tj
∣∣2 =

Tj1j
Tj1j2

Tj3j2
Tj3j4

· · · Tjk−3jk−4

Tjk−3jk−2

Tjk−1jk−2

Tjk−1jk

Tjjk . (110)

Thus, one may choose one matrix element of that loop as
real and non-negative, fix its modulus according to (110)
and then all other matrix elements of that loop are
uniquely determined. As a side remark, we would like to
point out, that the conditions in (108) and (109) constitute
particular nonlinear relations between observables, which
follow from the ones discussed in appendix B. In fact,
these conditions are obtained by applying successively the
condition in (B.4) of this appendix to the left-hand sides
of (108) and (109) yielding then the corresponding right-
hand sides.

As next step one has to choose from the total number
of all interference terms t∗j′tj with j

′ > j which is 1
2n(n−1)

—not counting t∗j′tj with j
′ < j, because (t∗j′tj)

∗ = t∗j tj′—
a set of n− 1 independent interference terms. Hereby, we
define a set of independent interference terms by the prop-
erty that they generate a geometric pattern which does not
contain any closed loop. From this definition follows that
a set of n−1 independent interference terms is represented
by a pattern of n−1 lines in such a fashion that i) each of
the n points is endpoint of at least one line, and ii) each
point is connected to all other points not necessarily in
a direct manner but via intermediate points. It is obvi-
ous that in such a pattern no closed loops can be present,
because one cannot construct from n − 1 lines a pattern
which contains a closed loop and which still connects all
n points. For such a set of n− 1 independent interference
terms all matrix elements can be expressed by one arbi-
trarily chosen matrix element, say tj0 according to (107).
In order to fix the remaining undetermined matrix ele-
ment tj0 one has to choose one additional observable f0.
From (105) one obtains in general an equation of the type

f0 = a+ b
∣∣tj0
∣∣2 + c

∣∣tj0
∣∣−2

, (111)

from which tj0 can be obtained, although not uniquely in
general. The ideal situation would be such that one finds
n− 1 independent interference terms each of them repre-
sented by only two observables. Because in this case one
employs just 2n − 1 observables. On the other hand, an-
alyzing the grouping of observables mentioned above, one
will in general not find such a situation, either the number
of observables for a set of n − 1 independent interference
terms is larger than 2n− 2, or the grouping is such, that
the choice of n−1 independent interference terms involves
observables which govern at least one additional interfer-
ence term leading to one or several closed loops. However,
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in that case those loops lead to the elimination of superflu-
ous observables. For example, considering fig. 2, one notes
that combination of the three lines of (a) with two con-
nected lines of the connected groups in (b) or (d) results in
a set of independent interference terms. According to ta-
ble 9, such a choice involves 14 structure functions, which
means, that all six longitudinal matrix elements can be ex-
pressed in terms of 15 observables. In order to eliminate
four of them, one can include the other group of two con-
nected lines of (c) or (d), yielding two closed loops which
allow the elimination. Thus, at the end one has a complete
set of eleven observables. Further illustrative examples for
such an analysis are discussed in some detail in [6].

4 Ingredients of calculation

In this section we will review briefly the various ingredi-
ents which go into the calculation of the structure func-
tions presented in this work. The structure functions are
determined by Hermitean quadratic forms in the matrix
elements of the e.m. current operator between the initial
and final states. As already mentioned in sect. 2, the cal-
culation is done with respect to the c.m. frame of the final
hadronic NN -state. Thus for a momentum transfer ~q the
initial deuteron moves in this reference frame with a mo-
mentum −~q, and one has to take into account the trans-
formation to the lab frame as governed by the β-factor
of (37).

Structure functions are calculated within a nonrel-
ativistic framework from the t-matrix defined in (27).
Therefore, the wave functions are purely nonrelativistic
and are obtained by solving the two-body Schrödinger
equation with a realistic NN -potential for the bound as
well as for the scattering states. Thus one of the princi-
pal ingredients of our calculation is a realistic potential
model in order to generate the bound and scattering np-
wave functions.

The leading current contribution is provided by the
nonrelativistic one-body nucleon current. As another im-
portant ingredient, we consider subnuclear degrees of free-
dom (d.o.f.) related to meson exchange currents (MEC)
and isobar configurations (IC). Because of the increasing
importance of relativistic effects with increasing energy
and momentum transfer, we include also relativistic con-
tributions of leading order beyond the nonrelativistic cur-
rent.

In view of the fact that some realistic NN -potentials
are defined in r-space while others are in p-space, we
have employed two separate corresponding codes. The
r-space code is an outgrowth of the work of Fabian and
Arenhövel [24] incorporating improvements and additions,
particularly with respect to the most important relativis-
tic spin-orbit current and other leading-order relativis-
tic contributions. In this code, isobar configurations are
treated in a perturbative approach [25] even though we
had developed in the past a coupled channel r-space
code [26]. However, in that code the ∆-propagator could
not be treated as exactly as in a p-space code.

The p-space code is described in detail in [27]. Besides
inclusion of the N∆-configuration as the most important
isobar configuration in a coupled channel approach, it al-
lows furthermore an exact treatment of all leading-order
relativistic contributions to one- and two-body currents as
well as the Lorentz boost for a one-boson exchange NN -
interaction model. In fact, this code was developed for the
Bonn p-space potentials (OBEPQ models) of [28] which
are potentials of this type with short range cut-off form
factors.

A further difference between the two codes lies in their
treatment of the electric multipoles. The r-space version
incorporates the Siegert operators thereby insuring the in-
clusion of the dominant MEC implicitly in electric transi-
tions. In the p-space version, mainly for historical reasons,
the Siegert form of the electric multipoles is not used.
In view of the fact that some potentials, e.g. the Bonn
r-space, are derived from their corresponding p-space ver-
sions, one can estimate the inherent numerical differences
between the two codes by using in this case the same po-
tential model in both codes.

The calculation of the t-matrix elements is based on an
expansion of the final state into partial waves with total
angular momentum j. The final-state interaction (FSI) is
taken into account by solving the corresponding scattering
equation for a given partial wave |~p, j mj〉. Then the elec-
tric and magnetic multipole transitions into this state are
evaluated explicitly. For a given j the contributing multi-
poles are L = j − 1, j, j + 1. However, at some point one
has to truncate the series at a maximal angular momen-
tum jmax for the explicit inclusion of FSI. On the other
hand, the convergence of the partial wave expansion de-
pends on the kinematics, in fact the convergence is quite
slow for the quasi-free case. The solution to this dilemma
is based on the fact that for higher partial waves the influ-
ence of FSI becomes increasingly unimportant with grow-
ing j so that for these the undistorted partial waves can
be used instead. Thus, we include all electric and mag-
netic multipoles up to a maximal multipolarity Lmax with
consideration of FSI up to jmax = Lmax + 1 and subtract
the corresponding transitions without FSI and add finally
the complete t-matrix obtained with a plane wave as final
state, which we call the plane wave Born approximation
(PWBA). This is described in detail in [24]. For all kine-
matics considered in this work Lmax = 4 was found to be
sufficient, i.e. the final result did not change if we increased
Lmax. As already mentioned, the higher partial waves are
needed only in the vicinity of the quasi-free ridge because
of the then slow convergence of the partial wave expan-
sion. The formal expression for the t-matrix in PWBA is
given in appendix F. We will now explain some details of
the separate ingredients.

4.1 NN-potential models

As mentioned above, the two-body wave functions, needed
for the calculation of the observables, are based on realis-
tic NN -potentials. In past work [1,2,4] we have employed
a number of realistic potentials, such as Nijmegen [29],
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Paris [30], Bonn (r- and p-space versions) [28], and Ar-
gonne V14 [31] potentials. In general, we found that the
dependence of the observables on the choice of a realis-
tic potential is rather moderate, in particular at low and
medium energy and momentum transfers. For this rea-
son we have chosen only one semi-modern potential, the
Bonn p-space model, for which a consistent meson ex-
change current has been constructed recently including
all leading-order relativistic contributions [27] to the cur-
rent operators, boost and internal dynamics as explained
below in sect. 4.4. This potential, as most of the realistic
NN -potentials, is defined in purely nucleonic space with-
out explicit ∆-d.o.f. Since, however, we will also present
results, where such ∆-d.o.f. are treated explicitly in a cou-
pled channel approach, we use in addition an interaction
potential which has been constructed recently for this pur-
pose [27] and which is based on the Bonn p-space poten-
tial. Furthermore, we consider as a prototype of recent
high precision potentials the Argonne V18 potential [32] in
the r-space code.

4.2 One-body currents

The one-nucleon current is derived from the nonrelativistic
reduction of the Dirac current, retaining the leading-order
relativistic contributions. The internal nucleon structure
is taken care of by including the free on-shell nucleon
e.m. form factors. In the p-space code we use the Dirac
and Pauli form, F1(Q

2) and F2(Q
2), respectively, where

Q2 = −q2µ. Explicit expressions are listed in the appendix

of [27]. The Sachs form with GE(Q
2) for the electric and

GM (Q2) for the magnetic form factor is used in the r-
space code. It is obtained from the Dirac-Pauli form by
the transformation

F1
(
Q2
)
= τ

(
Q2
)(

GE

(
Q2
)
+

Q2

4M2
GM

(
Q2
))

, (112a)

F2
(
Q2
)
= τ

(
Q2
)(
GE

(
Q2
)
−GM

(
Q2
))
, (112b)

with τ(Q2) = (1 + Q2/4M2)−1 and neglecting terms of
higher order beyond the leading relativistic order. Since
the difference between these two forms of the one-body
current is of higher relativistic order, the different treat-
ments in the two codes does not matter as long as the
leading-order relativistic contributions are included and
as long as the kinematics stays within the limits of valid-
ity of the truncated expansion keeping only the terms of
leading relativistic order [33].

A variety of form factor parametrizations is avail-
able [34–38]. The largest uncertainty exists for GEn.
Indeed, one of the early motivations for investigating
deuteron electrodisintegration with polarization degrees
of freedom was that it could provide a nearly model inde-
pendent method of determining the neutron electric form
factor GEn [39,40,23]. Since in these studies the sensitiv-
ity of various observables with respect to GEn has been
investigated extensively, we have employed here only one
form factor model, namely the dipole model including a

nonvanishing electric form factor of the neutron in the
Galster parametrization [34] (with p = 5.6).

In principle, one should consider also off-shell effects
in the one-body current in view of the fact, that the nu-
cleons are not free but subject to the hadronic interac-
tion. In such a situation, the form factors would acquire
an additional dependence on the initial and final squared
four-momenta of the nucleons and, moreover, additional
currents with more off-shell form factors would appear.
That such effects potentially may be non-negligible has
been shown recently for deuteron photodisintegration [41].
In that study off-shell effects were evaluated using a sim-
ple, but not very realistic pion cloud model for the nu-
cleon structure. At present, however, no realistic treat-
ment of such off-shell form factors exists, and thus we
neglect them here.

4.3 Meson exchange currents

An important property of realistic NN -interaction mod-
els is that they induce two-body meson exchange currents
(MEC). Indeed, any isospin and/or momentum depen-
dence of an NN -potential requires on a formal basis the
existence of an interaction current in order to satisfy the
continuity equation. The physics underlying such MECs
is related to the coupling of the hadronic interaction dia-
grams to the e.m. field. In the case that the NN -potential
is explicitly derived from a meson exchange model, this
connection is obvious and one obtains straightforwardly
the associated nonrelativistic MEC, of which the π-MEC
is the most important one, as well as the leading order
relativistic two-body charge and current contributions.

However, for potential models, which in their medium
range part use a phenomenological parametrization, the
construction of a proper exchange current for the isospin
dependent potential part is not unique, because the con-
nection to the underlying physical process is obscured.
For such cases, a recipe has been developed in the past
independently by Riska [42] and by Buchmann et al. [43],
which is inspired by the genuine meson exchange mod-
els. This recipe is based on the observation that the spin-
isospin dependent central and tensor parts of a given NN -
potential can be split into a pion- and rho-like exchange
potential for which the corresponding meson exchange
currents are known. While the approach of Riska is based
on the momentum space representation of the potential
and thus can be applied to any phenomenological poten-
tial, the method of Buchmann et al. was conceived for an
r-space representation of the potential as a superposition
of appropriate Yukawa functions, and thus its application
appeared to be limited to such type of potentials. But
recently, this approach was extended to potentials with
a more general radial behaviour by applying a Laplace
transform [44].

This phenomenological method works for the nonrela-
tivistic MEC reasonably well, but one should be aware,
that its construction contains some inherent arbitrari-
ness, because the π- and ρ-MEC contain purely transverse
pieces, which are not constrained by current conservation
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and thus can be modified arbitrarily without destroying
the consistency. An example for such a modification is
given in [43]. Thus, extending this recipe to the construc-
tion of relativistic MEC contributions in a corresponding
manner has to be considered as purely heuristic. Fortu-
nately, an important part of MEC can be incorporated
model independently by the use of Siegert operators for
the transverse electric multipoles [45,46]. In fact, in this
way the major MEC contribution to electric transitions is
consistently incorporated implicitly, at least for low and
medium energy and momentum transfers. In fact, the re-
sults in our work [1,2,4,5] labeled as the normal part (N)
contain MEC contributions via the electric Siegert oper-
ators implicitly, but otherwise no explicit MEC in either
the electric or magnetic transitions. However, as already
mentioned, in the p-space code, based on the work of Ritz
et al. [27], no Siegert operators are used. In this case the
results labeled “N” do not contain any MEC implicitly.
With respect to the isobar configurations, which will be
discussed in the next section, we also include those isobar-
MEC which are induced by the transition potentials.

A last remark concerns the question of e.m. form fac-
tors for the MEC. Here we take the heuristic approach
multiplying the isoscalar and isovector pieces by the ap-
propriate isoscalar and isovector nucleon form factors. In
this way, current conservation holds also in the presence
of such form factors.

4.4 Isobar contributions

Isobar d.o.f., describing phenomenologically internal nu-
cleon d.o.f., can be incorporated either in the form of effec-
tive nonlocal two-body operators, describing intermediate
excitations of one or two isobars, or by allowing explicit
isobar configurations (IC) in the nuclear wave functions,
where one or several nucleons are replaced by an isobar,
and with appropriate strong and e.m. operators [47]. In
the present work the latter approach is used by admitting
isobars as explicit constituents in the two-body system.
This allows one also to handle in a natural manner the
real excitation of a ∆(1232)-resonance for high enough
energy transfers above pion production threshold. It fur-
thermore avoids the often applied static approximation of
the effective MEC induced by the intermediate excitation
of an isobar, which has very limited value only. In the
present work, we have included the N∆, NN(1440), and
∆∆ configurations in the r-space code while in the p-space
code only the N∆ configuration is included as the most
important one for energy transfers up to about 400MeV.

The corresponding wave function components, called
isobar configurations, are obtained either in a perturba-
tive treatment or in a coupled channel approach. In the
perturbative approach, an isobar configuration, consisting,
for example of a N∆ configuration, is generated by just
one NN -collision via a transition potential NN → N∆
for which a simple one-boson exchange model is used [47].
On the other hand, in a coupled channel approach one has
to renormalize the original NN -interaction as mentioned

above, because being fitted in pure NN -space to experi-
mental scattering data, it contains implicitly already the
effect of such intermediate configurations, e.g. N∆. This
means that in principle one would need to redo the fit of
the potential parameters if such isobar configurations are
included explicitly. In order to avoid such involved work, a
reliable box-subtraction method, first proposed by Green
and Sainio [48], is available and was applied in [26,27]. In
most cases, however, we use the simpler perturbative cal-
culation [47]. Only in case of the N∆-configuration do we
also consider a coupled channel calculation for the Bonn
p-space potential [27] as mentioned above, because in mo-
mentum space the ∆ propagation can be treated in a more
exact manner compared to an r-space calculation [26]. Fi-
nally, one- and two-body current operators involving iso-
bars have to be considered. In view of the fact, that these
currents are less well known, we neglect relativistic terms
and restrict ourselves to their nonrelativistic expressions
which are given in [47] for the one-body terms and in [49]
for the MEC contributions, again with appropriate e.m.
form factors.

4.5 Relativistic contributions

Relativistic contributions arise from three sources. These
are i) the internal relativistic dynamics in the rest frame
of the nucleus, ii) the boost of the intrinsic wave function
from the nuclear rest frame, here the lab frame, to a mov-
ing one because of the nonvanishing momentum transfer,
and finally iii) relativistic contributions to the interaction
operators, here the current operators. In the present ap-
proach we resort to a p/M -expansion, retaining only the
leading-order relativistic terms beyond the nonrelativistic
limit. The boost of a wave function is described by a uni-
tary operator for which the p/M -expansion yields in lead-
ing order two separate contributions, a purely kinematic
part, which can be interpreted as the effect of Lorentz con-
traction and Thomas-Wigner spin rotation, and a poten-
tial dependent part, which only is present for pseudoscalar
meson exchange [50]. Relativistic contributions to the one-
body current have been discussed already in sect. 4.2.
With respect to MEC, consistent treatments are available
in [51–54] which are based on a meson-theoretical one-
boson exchange potential as nuclear interaction. The con-
struction is more questionable for semi-phenomenological
potentials like the Argonne V18, as pointed out in sect. 4.3.
Even a consistent nonrelativistic MEC is ambiguous for
such potentials [42]. Although one can proceed also for the
relativistic MEC in analogy to purely one-boson exchange
models, one should be aware of the inherent ambiguities
of such an approach.

A consistent treatment of all three types of contribu-
tions is given in the work of Göller and Arenhövel [52] for a
pure one-pion exchange model and by Tamura et al. [53]
for a more general potential type. The work of [52] has
been generalized in [27] to a consistent leading order rela-
tivistic treatment for the p-space Bonn potentials, and our
p-space code is based on this work. In view of the prob-
lems associated with the construction of a consistent MEC
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Fig. 3. Surface and contour plots of longitudinal and transverse form factors as function of Enp and q2 for Enp = 0–300MeV
and q2 = 0–25 fm−2 using the Argonne V18 potential.

for a semi-phenomenological potential, we include in the
r-space code as relativistic current contribution only the
one-body part, containing the most important spin-orbit
current, and the kinematic boost as described in [55].

5 Discussion of results

In the following discussion we will use as shorthand “FSI”
for final-state interaction, “PWBA” for nonrelativistic
one-body current with plane-wave final state, “RPWBA”
for relativistic one-body current with plane-wave final
state, “N” for the nonrelativistic normal theory, i.e. with-
out explicit meson exchange currents and isobar config-
urations. This means in the case that Siegert operators
are used, that a part of MEC is implicitly included in the
electric multipoles for “N” as is the case for the r-space
code, whereas for the q-space code no MEC contributions
in “N” appear. Furthermore, “MEC” and “IC” stand for
the contributions of explicit meson exchange currents and
isobar configurations, respectively, “RC” for the inclusion
of relativistic contributions and “T = N+MEC+IC+RC”
for the complete calculation.

5.1 Inclusive observables

The inclusive reaction d(e, e′)np for unpolarized beam and
target is governed by a longitudinal form factor FL and
a transverse one FT , whereas eight additional form fac-
tors appear if one allows for beam and target polarization.
These form factors depend on two variables, for which
we choose the final state c.m. excitation energy Enp (see
eq. (1)) and the squared c.m. three-momentum transfer ~q 2

(from now on we use the notation ~q = ~q c.m.), i.e. FL/T =

FL/T (Enp, ~q
2). All results presented in figs. 3 through 11

are obtained using the Argonne V18 potential. In order to
give an overview, the upper panels of fig. 3 show FL and

Fig. 4. Upper panels: longitudinal and transverse form fac-
tors along the quasi-free ridge as a function of Enp cal-
culated using the Argonne V18 potential. Notation: dot-
ted curve: PWBA; long-dashed curve: RPWBA; dash-dotted
curve: normal (N), i.e. nonrelativistic approach with FSI in-
cluded; short-dashed curve: nonrelativistic MEC and IC in-
cluded (N + MEC + IC); solid curve: complete calculation
(T = N + MEC + IC + RC). Lower panels: Form factor ra-
tios RL/T = FL/T (N)/FL/T (PWBA) (dotted curve), RL/T =
FL/T (T)/FL/T (RPWBA) (long-dashed curve) RL/T =
FL/T (N + MEC + IC)/FL/T (N) (dash-dotted curve), and
RL/T = FL/T (T)/FL/T (N +MEC+ IC) (short-dashed curve).

FT , calculated with the complete theory, in combined sur-
face and contour plots over the (Enp, q

2)-plane for Enp =
0–300MeV and q2 = 0–25 fm−2. For a more detailed view
of the form factors in the near-threshold region the lower
panels display them in a smaller part of the (Enp, q

2)-
plane, namely for Enp = 0–20MeV and q2 = 0–2 fm−2.

One readily notes that the quasi-free ridge along
Enp/MeV ≈ 10 q2/fm−2 is the dominant feature of these
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Fig. 5. Surface and contour plots over the (Enp, q
2)-plane of ratios of longitudinal form factors for different contributions:

(a) influence of FSI, FL(PWBA)/FL(N), for low Enp = 0–20MeV and in (b) for Enp = 20–300MeV; (c) influence of IC,
FL(MECIC)/FL(MEC), for low q2 = 0–2 fm−2 and in (d) for q2 = 2–25 fm−2; (e) influence of RC, FL(T)/FL(MECIC).

two form factors, where the quasi-free kinematic is defined
by the requirement that the virtual exchanged photon is
absorbed by only one nucleon, which is emitted in the for-
ward direction, with energy and momentum transfer such
that the spectator nucleon remains at rest in the lab sys-
tem. This yields the condition

Elab
np = M +

√
M2 + (qlab)2, (113)

which gives for the invariant mass according to (4a) us-
ing (9b)

Wnp = 2M

√
1 +

q2

M2
d

≈M

(
2 +

q2

M2
d

)
(114)

or for the final-state c.m. excitation energy

Enp = 2M

(√
1 +

q2

M2
d

− 1

)
≈ M

M2
d

q2. (115)

The latter relation gives the already-mentioned rule of
thumb Enp/MeV ≈ 10 q2/fm−2, a straight line in the
(Enp, q

2)-plane as is obvious in fig. 3.
The behaviour of the form factors along the quasi-free

ridge is displayed in the upper two panels of fig. 4 while
the lower two panels show form factor ratios with respect
to the various ingredients and interaction effects. The lon-
gitudinal form factor rises steeply, reaches its maximum
at quite low Enp around 5MeV, and falls off very rapidly
with increasing Enp. On the other hand, FT rises consider-
ably slower and reaches its maximum only around Enp =
30MeV. Also the fall off is much slower compared to FL.
One furthermore notes that for FL the effect of MEC and
IC is unimportant while for FT these are still sizeable
above Enp = 20MeV and of the order of several percent

decreasing slowly with growing Enp as shown by the dash-
dotted curves in the lower panels. Also the influence of
FSI becomes quite unimportant above Enp ≈ 30MeV as
seen in the upper panels by comparing the dotted curves
(nonrelativistic PWBA) with the short-dashed curves (N+
MEC+IC). Quantitatively, one finds from the ratios in the
lower panels (dotted curves) that above Enp ≈ 100MeV
an almost constant difference of a few percent remains.
The analogous ratios with relativistic contributions in-
cluded, i.e. FL/T (T)/FL/T (RPWBA) show a similar be-
haviour (long-dashed curves). The reason for the large
overestimation of FL in PWBA at low Enp has its origin
in the fact that the final state plane wave is not orthogonal
to the deuteron bound state so that the charge monopole
transition is not suppressed near threshold. On the other
hand, FT is strongly underestimated in PWBA because
of the absence of the resonance in the 1S0-state. The only
notable effect arises from relativistic contributions lead-
ing for both form factors to a sizeable reduction which in-
creases almost linearly with Enp. However, these RC are
quite well accounted for in the relativistic RPWBA as is
demonstrated by the little difference between the complete
calculation and the relativistic RPWBA their ratios ap-
proaching one with increasing Enp (long-dashed curves).

We now will turn to the near threshold behaviour
shown in the lower panels of fig. 3. One readily notes that
for Enp → 0 along q2 = const. FL runs first through a
broad maximum and then decreases rapidly to zero while
FT rises dramatically resulting in a very sharp peak right
above threshold. The peak height grows first with increas-
ing q2, reaches its maximum around q2 = 0.5 fm−2 and
then falls off. The rapid decrease of FL and the sharp
peak of FT near Enp ≈ 0 is a consequence of the fact, that
close to break-up threshold the 1S0-scattering state, the
so-called anti-bound state, dominates the final state into
which the Coulomb monopole transition is forbidden while
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Fig. 6. Surface and contour plots over the (Enp, q
2)-plane of ratios of transverse form factors for different contributions:

(a) influence of FSI, FT (PWBA)/FT (N); (b) influence of MEC, FT (MEC)/FT (N) for low Enp = 0–20MeV and in (c) for
Enp = 20–300MeV; (d) influence of IC, FT (MECIC)/FT (MEC); (e) influence of RC, FT (T)/FT (MECIC) for low Enp = 0–
20MeV and in (f) for Enp = 20–300MeV.

one has a very strong magnetic dipole isovector transition
which is further enhanced by MEC and IC contributions.
Above Enp ≈ 4MeV and q2 ≈ 0.4 fm−2 both the surface
plot as well as the contour lines exhibit clearly the onset
of the quasi-free ridge in both form factors.

The relative influence of the various interaction ef-
fects are shown as ratios in fig. 5 for the longitudinal
form factor. Because of the strong influence of FSI on
FL near threshold, we show for this form factor the ra-
tio FL(PWBA)/FL(N) separately for the region Enp ≤
20MeV in fig. 5(a), exhibiting the already noted very
strong effect of FSI, resulting in a strong increase of
this ratio for q2 → 0 along Enp = const, whereas
FL(PWBA)/FL(N) → 0 for Enp → 0 along q2 = const.
For the remaining part (20 ≤ Enp/MeV ≤ 300) this ra-
tio is shown in fig. 5(b). The influence of FSI is minimal
on top of the quasi-free ridge while it leads to an increase
above this ridge, i.e. for Enp/MeV > 10 q2/fm−2, and to a
decrease below. MEC have almost no effect on FL and thus
are not shown here, because the dominant nonrelativistic
π-MEC does not contribute to the charge density. The ef-
fect of isobar configurations on FL is shown in fig. 5(c) for
q2 ≤ 2 fm−2 and in (d) for q2 ≥ 2 fm−2. Above the quasi-
free ridge FL is reduced by IC. In particular for low q2 close
to zero and Enp approaching the ∆-excitation region, FL
decreases drastically by IC to about 10 percent. Going be-
low the quasi-free ridge, one again notes a reduction but
of smaller size which diminishes when approaching small
Enp. Furthermore, RC, shown in fig. 5(e), exhibit an in-
teresting behaviour: along the quasi-free ridge one finds
a distinctive valley describing the increasing reduction by
RC with increasing Enp or q2 as was already apparent in
fig. 4 (upper right panel). Away from the quasi-free ridge
the influence of RC diminishes first on both sides to al-
most zero and increases then again when approaching the
regions of higher Enp and lower q2 or vice versa.

The corresponding ratios for FT are displayed in fig. 6.
For this form factor the effect of FSI is much more pro-
nounced off the quasi-free ridge than in FL as is shown by
the ratio FT (PWBA)/FT (N) in part (a). One finds a very
strong decrease on both sides, i.e. at low Enp with increas-
ing q2 as well as at low q2 but increasing Enp, which means
a strong enhancement by FSI. For the display of MEC ef-
fects we show in part (b) the region of low Enp and in part
(c) the remaining region. As already mentioned, along the
quasi-free ridge one finds little influence. But going away
from this ridge, MEC lead to a sizeable increase as shown
in part (c), especially strong close to threshold (see part
(b)) up to about q2 = 15 fm−2. For higher momentum
transfers MEC result in a reduction. This behaviour is
well known and in agreement with experimental data [56,
57]. Isobar effects displayed in fig. 6(d) become quite pro-
nounced only in the region of ∆ excitation near Enp =
260MeV and for not too high momentum transfers. Fi-
nally, relativistic contributions lead for Enp near threshold
and q2 around 15–20 fm−2 to quite a significant increase
as shown in fig. 6(e). For the remaining region in fig. 6(f)
one notes again a significant reduction along the quasi-free
ridge as in FL in the form of a pronounced valley.

A survey for the additional form factors for polarized
beam and target, calculated with the complete theory, is
shown in fig. 7 for F 20

L , F 20
T , F ′10

T , and F 2−2
TT and in fig. 8

for the LT -interference form factors as surface and con-
tour plots over a smaller portion of the (Enp, q

2)-plane,
i.e. Enp = 0–160MeV and q2 = 0–16 fm−2. The largest

polarization form factors are F 20
T , F 2−2

TT , F ′10
T , and F ′1−1

LT
which are of the same order of magnitude as the unpo-
larized form factors. An order of magnitude smaller are
F 20
L and F 2−1

LT . The remaining two, F 1−1
LT and F ′2−1

LT , are
three orders of magnitude smaller although they increase
slightly in size along the quasi-free ridge.
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Fig. 7. Surface and contour plots of polarization form factors F 20
L , F 20

T , F ′10
T , and F 2−2

TT for polarized beam and target as a
function of Enp and q2 for Enp = 0–160MeV and q2 = 0–16 fm−2.
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Fig. 8. Surface and contour plots of polarization LT -interference form factors for polarized beam and target as a function of
Enp and q2 for Enp = 0–160MeV and q2 = 0–16 fm−2.

The influence of FSI, MEC, IC and RC cannot be dis-
played as ratios because these form factors have zeros. For
this reason we show only for the larger form factors the
most important influences by plotting differences for FSI
(N-PWBA) in fig. 9, for combined contribution from MEC
and IC (MECIC-N) in fig. 10, and for RC (T-MECIC) in
fig. 11. The final-state interaction is very important for all
polarization form factors shown in fig. 9 in the region of
low Enp = 0–40MeV and low q2 = 0–4 fm−2. MEC and
IC effects displayed in fig. 10 are substantial in the trans-
verse form factors F 20

T , F 2−2
TT , and F ′10

T , mostly below the
quasi-free ridge, whereas they are of minor importance in
the interference form factors F 2−1

LT and F ′1−1
LT , the largest

effect being near the quasi-free ridge. Relativistic contri-

butions show up in fig. 11 along the quasi-free ridge in the
primed form factors F ′10

T and F ′1−1
LT as well as in F 2−1

LT .

Now we will turn to a comparison with experimen-
tal data. Most extensively discussed has been the inclu-
sive electrodisintegration near threshold, averaged over
Enp = 0 through 3–5MeV, at higher momentum transfers
(see [56,57]) and we will not repeat the discussion here.
Instead we will compare the theory to the experimental
data for FL and FT as obtained by a Rosenbluth sep-
aration in the near-threshold region for various momen-
tum transfers by Simon et al. [58]. The only comparison
to theory reported in that work was for a nonrelativis-
tic treatment employing the Paris potential and π-MEC,
and a satisfactory agreement was found. In the light of
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Fig. 9. Influence of FSI: surface and contour plots of differences of polarization form factors calculated in normal nonrelativistic
theory (N) and in PWBA as a function of Enp and q2 for Enp = 0–140MeV and q2 = 0–14 fm−2.
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Fig. 10. Influence of MEC and IC: surface and contour plots of differences of polarization form factors calculated with MEC
and IC and in normal nonrelativistic theory as a function of Enp and q2 for Enp = 0–140MeV and q2 = 0–14 fm−2.
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Fig. 11. Influence of RC: surface and contour plots of differences of polarization form factors calculated with MEC and IC and
for complete theory as a function of Enp and q2 for Enp = 0–140MeV and q2 = 0–14 fm−2.
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Fig. 12. Longitudinal and transverse form factors with
various interaction effects. Notation: dash-dotted curve: N;
dashed curve: N+MEC+IC; solid curve: N+MEC+IC+RC.
Experimental data from Simon et al. [58].

the considerable progress which theory has achieved since
then, it appears timely to compare the modern approaches
with those data. Thus, we confront in fig. 12 three data
sets of [58] corresponding to the squared momentum trans-
fers q2 ≈ 0.6, 1.5, and 3.8 fm−2 for Enp = 0–9MeV
with various interaction effects, i.e. normal nonrelativis-
tic approach (N), with inclusion of meson exchange cur-
rents and isobar configurations (N + MEC + IC), and
the complete theory including relativistic contributions
(T = N+MEC+ IC + RC) for the Bonn-Qb potential.

As expected, for FL the interaction effects from MEC
and IC are very small though not completely negligible.
Relativistic effects show some influence resulting in a small
reduction above Enp ≈ 5MeV which increases slightly in
size with Enp. The agreement of the full theory with the
data for FL is quite satisfactory. One should keep in mind,
that no open parameter has been fit in this comparison.

The transverse form factor FT shows right above
threshold the already noted distinctive peak arising from
the M1-transition into the anti-bound 1S0-state. Here the
influence of MEC and IC is quite significant, especially
in the peak region, and it grows sizeably with increas-
ing squared momentum transfer. On the other hand, RC
lead only to a slight reduction for q2 = 3.8 fm−2 while
for the other two cases they show no effect at all. The
agreement with the data is in general quite good except
for the peak where the theory lies above the data. It is
very likely, however, that the experimental resolution was

Fig. 13. Longitudinal and transverse form factors for var-
ious potential models. Notation: dashed curve: Paris; long-
dash-dotted curve: Argonne V14; short-dash-dotted curve:
Argonne V18; solid curve: Bonn-Qb. Experimental data from
Simon et al. [58].

insufficient to resolve this very sharp peak. The potential
model dependence is shown in fig. 13 using the Bonn-Qb,
the two Argonne potentials V14 and V18, and the Paris
potential. The variation of the predicted form factors by
these potentials is much smaller in size than the size of
interaction effects. The only exception is the prediction
of the peak height for the Paris potential, which gives a
lower value. The reason for this lies in the Paris poten-
tial’s prediction of too small a value for the np-scattering
length. Finally, in order to give a more detailed and quan-
titative comparison with experiment we show in fig. 14
the ratios of the data and the various theoretical model
predictions to the results obtained with the Bonn-Qb po-
tential. It is obvious that the variation with the potential
model is substantially smaller than the experimental er-
rors. Certainly, much more precise data, in particular at
the threshold peak, are needed in order to put the theory
to a more critical test.

Another set of data for the inclusive reaction at higher
excitation energy Enp and higher momentum transfers is
provided by Quinn et al. [59]. We show first a comparison
between theory and experiment for some inclusive cross-
sections corresponding to several different kinematics re-
ported by Quinn et al. which exhibit nicely the quasi-free
peak, namely at Enp ≈ 20MeV in fig. 15 and at Enp ≈
70MeV in fig. 16. The upper panels refer to forward angles
(60◦) and the lower ones to backward angles (134.5◦). In
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Fig. 14. Ratios of the longitudinal and transverse form factors for various potential models with respect to the Bonn-Qb
potential. Notation as in fig. 13. Experimental data from Simon et al. [58].

Fig. 15. Inclusive cross-sections d(e, e′). Upper panels for
Elab

1 = 292.8MeV and θlab
e = 60◦. Lower panels for

Elab
1 = 174.3MeV and θlab

e = 134.5◦. Experimental data
from Quinn et al. [59]. Notation of curves: Left panels for
nonrelativistic normal theory (N) and right panels for com-
plete theory (T) for Bonn-Qb (dashed) and Argonne V18

(solid) potentials.

the left panels the predictions of the nonrelativistic nor-
mal theory obtained with the Bonn-Qb and Argonne V18
potentials is compared to the data and in the right pan-
els the complete theory. The normal theory results in a
slight potential dependence as is apparent in the quasi-free
peak with the results for the Bonn-Qb potential slightly
higher and more pronounced for the 60◦ data. However,
this potential model dependence is very much reduced for
the complete theory. The most significant improvement of
the full calculation is seen in the near-threshold region at
backward scattering angles (see lower panels). In general
the agreement is quite good. The underestimation above

Fig. 16. Inclusive cross-sections d(e, e′). Upper panels for
Elab

1 = 596.8MeV and θlab
e = 60◦. Lower panels for

Elab
1 = 367.7MeV and θlab

e = 134.5◦. Experimental data
from Quinn et al. [59]. Notation of curves: Left panels for
nonrelativistic normal theory (N) and right panels for com-
plete theory (T) for Bonn-Qb (dashed) and Argonne V18

(solid) potentials.

ω = 200MeV in the upper panels of fig. 16 has its ori-
gin in the absence of pion production contributions in the
theory which become significant in this region.

The fact, that the model dependence of the nonrela-
tivistic normal theory is stronger for forward scattering
angles, points to a stronger model dependence of FL com-
pared to FT . Indeed, this is confirmed by the comparison
of the theory with the experimentally determined longitu-
dinal and transverse form factors in figs. 17 and 18. How-
ever, this model dependence disappears almost completely
for the full theory.
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Fig. 17. Longitudinal form factors. Upper panels for E lab
1 =

278.5MeV and θlab
e = 134.5◦ and lower panels for Elab

1 =
174.3MeV and θlab

e = 134.5◦. Experimental data from
Quinn et al. [59]. Notation of curves: left panels for non-
relativistic normal theory (N) and right panels for complete
theory (T) for Bonn-Qb (dashed) and Argonne V18 (solid)
potentials.

Fig. 18. Transverse form factors. Upper panels for E lab
1 =

278.5MeV and θlab
e = 134.5◦, middle panels for Elab

1 =
174.3MeV and θlab

e = 134.5◦, and lower panels for Elab
1 =

367.7MeV and θlab
e = 134.5◦. Experimental data from

Quinn et al. [59]. Notation of curves: left panels for non-
relativistic normal theory (N) and right panels for complete
theory (T) for Bonn-Qb (dashed) and Argonne V18 (solid)
potentials.

One should keep in mind that a direct comparison with
the response functions RL/T reported in [59] is not possi-
ble because of different definitions. However, the relations
of RL/T to our form factors is easily obtained by compar-
ing the formal expressions for the inclusive cross-section.
In ref. [59] the response functions RL/T are defined by

dσ

dklab2 dΩlab
e

= σMott

(
ξ2RL +

(
η +

ξ

2

)
RT

)
, (116)

whereas we use according to (78) in conjunction with (26)

dσ

dklab2 dΩlab
e

= 6 c
(
klab1 , klab2

)
(ρLFL + ρTFT )

= σMott

(
ξ2
β2FL
2π2α

+

(
η+

ξ

2

)
FT
2π2α

)
. (117)

This yields finally

FL = 2π2α
q2

(qlab)2
RL and FT = 2π2αRT . (118)

For FL the normal nonrelativistic theory reveals a size-
able potential model dependence according to the left pan-
els of fig. 17 which, however, is strongly reduced for the
complete theory leading to a satisfactory agreement with
the data. On the other hand FT in fig. 18 exhibits much
less sensitivity to the potential model for the normal non-
relativistic theory. The improvement by the full calcula-
tion in the near threshold region with respect to the data
is clearly seen in the middle panels. In the lower panel the
absence of pion production in the theory is again respon-
sible for the underestimation above ω = 200MeV.

5.2 Exclusive observables

Compared to the eight inclusive observables below pion
threshold one has 324 independent structure functions for
the exclusive case. This greater variety coupled with the
angular dependence of each observable allows a more de-
tailed analysis of the reaction under study. For example,
the differential cross-section alone provides 41 structure
functions if one allows for beam and target polarizations
(see table 3). Polarization analysis of one or both outgo-
ing nucleons yields an even larger number of structure
functions. However, as has been discussed in detail in
sect. 3.2.2, in principle a set of 35 independent observables
should suffice for a complete determination of all reaction
matrix elements. In practice, however, some of these ob-
servables will be very difficult to measure experimentally
with the required accuracy.

For this reason we have decided to discuss here only
those structure functions which are relatively easily ac-
cessible, i.e. which require the measurement of only one
asymmetry (see table 10 of appendix D). Our discussion
will focus on the sensitivity of these structure functions to
various interaction effects.

To begin we will briefly give a survey on the four struc-
ture functions of the unpolarized differential cross-section.



174 The European Physical Journal A

Fig. 19. Survey on the four unpolarized structure functions along the quasi-free ridge, calculated for the Bonn-Qb potential.
The top left inset “[(−n) fm]” indicates the unit [10−n fm] for the structure function and the top right inset “[Enp/q

2]”, where
Enp in [MeV] and q2 in [fm−2], indicates the kinematic sector. Notation of the curves: N (short dashed), N+MEC (dash-dotted),
N +MEC+ IC (long dashed), total = N +MEC+ IC + RC (solid).

Since the structure functions depend on Enp and q
2 in ad-

dition to θc.m., we have chosen to represent the various
kinematical regions by a grid in the (Enp, q

2)-plane, de-
fined by Enp = 10, 50, 100, 175, 250MeV and q2 = 1,
5, 10, 17.5, 25 fm−2. Only for Enp = 250MeV the lowest
q2-value was taken as 1.5 fm−2 because of the photon line
according to (7). Figure 19 shows the four structure func-
tions along the quasi-free ridge. The longitudinal structure
function fL shows a pronounced peak in the forward di-
rection essentially caused by the charge interaction of the
virtual photon with a proton which is emitted preferen-
tially along q. There is no corresponding peak at 180◦ for
the neutron because of its very small electric form factor.
For this reason, we have restricted the angular range to
the forward direction. With increasing momentum trans-
fer, the width of this forward peak decreases markedly
(one should note that the angular range differs for the
various cases). Similarly, along the quasi-free ridge fT ex-

hibits forward and backward peaks with decreasing width
for growing q. The forward peak arises from the e.m. in-
teraction with the dominant spin current of the proton at
θ = 0◦ while the backward peak at θ = 180◦ (again not
shown) is similar in structure and corresponds to neutron
emission along q. The ratio of the forward-to-backward
peaks is essentially given by the square of the ratio of the
proton to neutron magnetic moments i.e. (µp/µn)

2 ≈ 2.
As was already pointed out in the discussion of the form
factors, along the quasi-free ridge most of the interaction
effects are marginal, except for relativistic contributions
which can result in a decrease of the forward and, in the
case of fT , backward peaks growing sizeably with increas-
ing momentum transfer. The decrease is particularly sig-
nificant in fL amounting, for example, at q2 = 10 fm−2 to
about 40% and at q2 = 25 fm−2 to even 70%. In fT the
effect is smaller, roughly by a factor two.
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Fig. 20. Survey on longitudinal structure function fL off the quasi-free ridge, calculated for the Bonn-Qb potential. Notation
of the curves as in fig. 19.

The interference structure function fLT , which has to
vanish for θ = 0◦ and 180◦, exhibits a negative forward
peak of broader distribution than the diagonal structure
functions and is almost an order of magnitude lower. A
much smaller peak appears for neutron emission close to
180◦ with opposite sign which is not shown in fig. 19. The
influence of MEC and IC is very tiny and even RC show
up only slightly at intermediate Enp = 50 to 100MeV.
The interference structure function fTT is even smaller,
about two orders of magnitude compared to fLT . Interac-
tion effects from MEC and IC play only a slightly more
significant role. However, RC result in a distinct and size-
able peak at backward angles.

In figs. 20 through 23 we show the four structure func-
tions for kinematical settings off the quasi-free ridge, i.e.
six settings for Enp/MeV > 10q2/fm−2 in the upper left
panels and six settings for Enp/MeV < 10q2/fm−2 in the
lower right panels. Away from the quasi-free ridge, the
magnitudes of fL and fT drop rapidly. For fL, shown in
fig. 20, the width of the forward peak increases. On the
lower right side only RC show quite sizeable influences
because of the absence of nonrelativistic MEC contribu-
tions and the neglect of a very small charge excitation of
the ∆ —for this reason the short- and long-dashed and
the dash-dot curves coincide in fig. 20— whereas on the
upper left side, i.e. for Enp/MeV > 10q2/fm−2, also IC
become increasingly important when approaching the ∆-
region while keeping the momentum transfer small. The
influence of IC arises through the change of the normal

wave function component via the dynamic coupling of the
NN - and N∆-channels.

For the transverse structure function fT in fig. 21,
which is slightly larger in size than fL, the various in-
teraction effects become much more pronounced off the
quasi-free ridge than for fL because of the presence of
nonrelativistic MEC and strong transverse excitation of
the ∆. Indeed, at low energy MEC provide the largest
interaction effect followed by RC while IC remain small.
That changes for energies in the region of ∆-excitation
above the quasi-free ridge, where naturally the IC con-
tributions dominate, although MEC are also sizeable and
even RC cannot be neglected, in particular in the forward
and backward regions.

The interference structure function fLT in fig. 22 is
comparable in size to fL, however, considerably more sen-
sitive to interaction effects. It shows a negative peak in
forward direction, a maximum around 90◦ and another
but much less pronounced negative peak at backward an-
gles. RC produce by far the strongest effect, deepening
the forward negative peak, enhancing the maximum and
weakening or even washing out completely the negative
backward peak so that a small positive peak results for
some kinematics.

The other interference structure function fTT , shown
in fig. 23 is of comparable size to fLT off the quasi-free
ridge. This is in contrast to their behaviour along the
quasi-free ridge where fTT is about two orders of mag-
nitude smaller than fLT as depicted in fig. 19. Below the
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Fig. 21. Survey on transverse structure function fT off the quasi-free ridge, calculated for the Bonn-Qb potential. Notation of
the curves as in fig. 19.

Fig. 22. Survey on interference structure function fLT off the quasi-free ridge, calculated for the Bonn-Qb potential. Notation
of the curves as in fig. 19.
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Fig. 23. Survey on interference structure function fTT off the quasi-free ridge, calculated for the Bonn-Qb potential. Notation
of the curves as in fig. 19.

Fig. 24. Influence of IC on various structure functions calculated with the Bonn-Qb potential. Notation of the curves: N (short
dashed), N +MEC (dash-dotted), N +MEC+ IC (long dashed), T = N+MEC+ IC + RC (solid).

quasi-free ridge it shows a distinct minimum around 110◦

which is decreased by MEC but then deepened slightly by
IC and, but more strongly, by RC. Above the quasi-free
ridge the influences of interaction effects show in a certain
sense an opposite behaviour. Here MEC deepen the min-
imum, lying more at forward angles, but produce a sign
change in the backward direction. This effect is drastically
counterbalanced at forward angles by IC and amplified at

larger angles. The additional RC lead then finally to a
smaller reduction, deepening the small forward minimum,
which exists for higher Enp and q2.

Now we turn to the question of which structure func-
tions exhibit the most significant sensitivity with respect
to the various interaction effects. As already mentioned
we take into account only those cases which require a sin-
gle asymmetry measurement (see table 10 of appendix D).
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Fig. 25. Upper panels: influence of MEC on various structure functions calculated with the Bonn-Qb potential. Notation as in
fig. 24. Lower panels: potential model dependence of the total result for the same structure functions. Notation of the curves:
Bonn-R (short dashed), Paris (dash-dotted), Argonne V18 (long dashed), Bonn-Qb (solid).

Fig. 26. Upper panels: influence of RC on various structure functions calculated with the Bonn-Qb potential. Lower panels:
potential model dependence of the total result for the same structure functions. Notation as in fig. 25.

In addition, we consider as observables the cross-sections
and single-proton polarizations (x0, y0, z0) only. We have
studied these selected structure functions in the same
kinematic regions as taken for the survey of the unpolar-
ized structure functions but present here only those kine-
matic cases where we found the strongest signatures.

In fig. 24 we show the most relevant cases for the IC
contribution. It is not surprising that they are all found
at an excitation energy in the ∆-resonance region at lower
momentum transfer. As pointed out before, appropriate
potential models with ∆ degrees of freedom are lacking
and thus we only show results for the coupled channel cal-
culation with the renormalized Bonn-Qb potential. The
figure shows that there are quite a number of different

structure functions which are essentially dominated by
their IC contribution and thus are ideal cases for the study
of such IC effects. It is worthwhile to note that there are
not only transverse (f ′10T , f ′11T , f ′00T (z0), f ′11T (z0)), but also

LT-type structure functions (f ′11−LT (z0), f ′11+LT (x0)) among
the cases presented.

Observables which exhibit sensitivity to the MEC con-
tribution are shown in fig. 25. While for f ′10T the strongest
relative MEC effect is found around θ = 90◦, for f ′11T (x0)
and f ′00T (x0) one has the most pronounced effects at back-
ward angles. The potential model dependence is not very
important and is particularly small for f ′00T (x0). We would
like to mention that the f ′10T result is very similar to that
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Fig. 27. Influence of IC on asymmetries for kinematic settings for the separation of the various structure functions in fig. 24
calculated with the Bonn-Qb potential. Notation of the curves: N (short dashed), N+MEC (dash-dotted), N+MEC+IC (long
dashed), T = N+MEC+ IC + RC (solid). The upper left inset lists the various angles according to [θe, φ, θd, φd].

Fig. 28. Influence of MEC on asymmetries for kinematic settings for the separation of the various structure functions in fig. 25
calculated with the Bonn-Qb potential. Notation as in fig. 27.

Fig. 29. Influence of RC on asymmetries for kinematic settings for the separation of the various structure functions in fig. 26
calculated with the Bonn-Qb potential. Notation as in fig. 27.

of f00T for the same kinematics (see fig. 21). In fact, f 00T is
very sensitive to the MEC contribution and can in prin-
ciple be determined in a single measurement (scattered
electron at backward angle and φ = 45◦).

In fig. 26 we show those structure functions where
there are major effects due to relativistic contributions.
A very strong effect is seen for f 10−LT , although this struc-
ture function shows a rather severe potential model depen-
dence as well. For f ′11T (z0) one finds a similar situation,
but with somewhat smaller relativistic influence and a less

pronounced variation with the potential model. On the
contrary, for f11−LT (y0) one observes essentially no poten-
tial model dependence and a large relativistic contribution
at forward angles.

In view of the fact that, besides the unpolarized dif-
ferential cross section, the quantities which one measures
experimentally are asymmetries, we present in figs. 27
through 29 the asymmetries corresponding to the struc-
ture functions of figs. 24 through 26 in order to see which of
them produce sizeable, i.e. easily accessible asymmetries.
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Fig. 30. Tensor asymmetry AT
d for Enp = 250MeV, q2 = 1.5 fm−2 calculated with the Bonn-Qb potential. Notation as in

fig. 27.

Fig. 31. Vector asymmetry AV
ed at two different off-quasi-free kinematics, calculated with the Bonn-Qb potential. Left panel

for Enp = 10MeV, q2 = 10 fm−2 and right panel for Enp = 100MeV, q2 = 1 fm−2. Notation as in fig. 27.

Fig. 32. Asymmetries at three different on-quasi-free kinematics, calculated with the Bonn-Qb potential. Left panel Ae for
Enp = 10MeV, q2 = 1 fm−2, middle panel AVd for Enp = 30MeV, q2 = 3 fm−2, and right panel ATd for Enp = 250MeV,
q2 = 25 fm−2. Notation as in fig. 27.

In order to emphasize the interaction and relativistic ef-
fects in the numerator, the following asymmetries always
refer to the unpolarized differential cross-section in which
all contributions from MEC, IC and RC are included, i.e.
S0 in eq. (83) is S0(T ).

With respect to IC effects, one readily notes in fig. 27
three sizeable asymmetries of the order of one, namely AV

ed
for two different settings (θd = 0◦ and 90◦ with φd = 90◦),
requiring electron and deuteron vector polarization, and
Ae(z0), requiring electron polarization and a proton po-
larimeter. Two other asymmetries, AV

d (z0) and AV
ed(z0),

are of the order of 0.2. Only AV
ed(x0) is too small being of

the order of 0.004. Of the asymmetries sensitive to MEC
in fig. 28 the largest one is AV

ed being of the order of 0.7,
whereas the other two are smaller, of the order of 0.4. With
respect to RC, two asymmetries in fig. 29 are sufficiently
large, namely AV

d and AV
d (y0) with a magnitude of about

0.1 to 0.2, but only AV
d exhibits a large RC effect.

Finally we would like to briefly discuss irrespective of
the problem of separating a specific structure function the
question which observables show in specific asymmetries
of sizeable magnitude either a large influence or none by
interaction contributions. We have investigated for a large
number of observables various asymmetries for a variety
of kinematic settings. Some results of this search are pre-
sented in figs. 30 and 31.

Figure 30 exhibits the tensor asymmetry AT
d for two

different settings of the angles φ, θd and φd. Without inter-
action effects the asymmetry would be quite small, about
0.1 or less. In the left panel, MEC lead to a strong en-
hancement around 0◦ and 180◦ which are partially can-
celed by relativistic contributions. On the other hand,
IC show a large and dominant influence around 90◦ and
270◦ where the other effects are very small. The right
panel is an instructive example on how the asymmetry
and the relative size of the various contributions change
with a change of the out-of-plane angle φ and the deuteron
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orientation angles. In the left panel of fig. 31, the vector
asymmetry AV

ed exhibits at low energy but higher momen-
tum transfer a large MEC effect which is cut down to
almost one half by relativistic contributions whereas IC is
negligible. The same asymmetry at a different kinemat-
ics, Enp = 100MeV and q = 1 fm−2, in the right panel
of fig. 31 shows a strong influence from MEC and IC of
almost equal size and interfering constructively, while RC
effects are tiny.

As last examples we show in fig. 32 three asymme-
tries for on-quasi-free kinematics, two at low energies and
one in the ∆-region which exhibit a nearly interaction in-
dependent behaviour. The two asymmetries at quite low
energies, Ae in the left panel and in particular AV

d in the
middle panel show very little influences from interaction
and relativistic effects. In general these effects increase
with growing energy Enp. But even for the example in
the right panel at considerably high energy such influ-
ences are still relatively small. It is not surprising, that
one finds such a behaviour for kinematics belonging to
the quasi-free ridge, because one expects that influences
from FSI, MEC and IC will be minimal there. Because of
their model independence, such cases provide consistency
checks for theory and experiment.

With this we will close the discussion of our results.
We will not compare to experimental data on the exclusive
reaction [60–75] because they have already been compared
to our approach and thus nothing new can be said.

6 Summary and conclusion

In this work we have presented a thorough and detailed
survey on polarization observables in electrodisintegration
of the deuteron. It contains a general review of the basic
formal aspects with respect to kinematics, the definition
of observables and structure functions, their multipole de-
composition, the question of completeness and the con-
struction of independent sets of observables including an-
alytic solutions of the t-matrix elements in terms of struc-
ture functions.

Furthermore, a detailed account of the dynamic ingre-
dients of the theoretical framework is given with respect to
the basic NN -force, the associated meson exchange cur-
rents, isobar configurations for the consideration of inter-
nal nucleon dynamics, and leading order relativistic con-
tributions.

As results we first have presented a general survey on
the unpolarized and polarized form factors of the inclu-
sive process indicating the various kinematic regions with
respect to energy and momentum transfer where sensi-
tivities to MEC, IC and RC according to the theoretical
framework are to be expected. Furthermore, a compari-
son with experimental data for the near threshold region
and for quasi-free kinematics is discussed. For the thresh-
old region the influence of interaction effects is quantita-
tively confirmed. Also the quasi-free peak is well repro-
duced provided the reduction by relativistic contributions
is included.

For the exclusive reaction an extensive survey on the
unpolarized structure function for a representative grid
of energy and momentum transfers is given including a
detailed discussion of the various interaction effects. Fur-
thermore, for a selected set of polarization structure func-
tions whose determination requires only one asymmetry
measurement, we have chosen those kinematic regions in
which either IC or MEC or RC play a major role with
subsequent discussion of the associated asymmetries.

Finally, we hope that this survey will stimulate further
experimental and theoretical research allowing one to test
more thoroughly the underlying basic dynamics. This is
of particular importance with respect to the question how
well do we understand the strong interaction in terms of
effective degrees of freedom, i.e. in terms of meson, nu-
cleon and isobar degrees of freedom, and where will we
need to introduce explicitly the basic quark and gluon de-
grees of freedom of QCD.

This work was supported by the Deutsche Forschungsgemein-
schaft (SFB 443) and by the National Science and Engineering
Research Council of Canada.

Appendix A. Explicit expressions for the

U
λ

′
λIM

X
in the standard representation of the

t-matrices

In view of the angular momentum algebra, it is useful to
switch to a spherical representation replacing the Carte-
sian components of the nucleon spin operators by their
spherical ones

σα(i) =
∑

τ=0,1

τ∑

ν=−τ
sτνα σ[τ ]ν (i), for α = 0, . . . , 3, (A.1)

where we have introduced the equivalent complete set of
2× 2-matrices in s = 1/2 space

σ[τ ]ν (i), for τ = 0, 1 and |ν| ≤ τ, (A.2)

defining σ
[0]
0 = σ0 =

�
2 and σ

[1]
ν = σν , the spherical com-

ponents of the Pauli spin matrices. The transformation
matrix is given by

sτνα = c̄(α) δτ,τ̃(α)
(
δν,ν̃(α) + ĉ(α) δν,−ν̃(α)

)
, (A.3)

with

ĉ(α) = δα2 − δα1 , c̄(α) =

{
1, for α = 0, 3

i−α−1
√
2
, for α = 1, 2

,

τ̃(α) = 1− δα0 , ν̃(α) =

{
0, for α = 0, 3

1, for α = 1, 2
.

(A.4)

For the inverse transformation from spherical to Cartesian
components one easily finds

σ[τ ]ν (i) =

3∑

α=0

cατν σα(i), (A.5)
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where we have introduced

cατν = c(ν)
(
δα,a(τ,ν) + iν δα,b(τ,ν)

)
, (A.6)

and

c (ν) = − ν√
2
δ|ν|1 + δν0 , a (τ, ν) = 3τ − 2|ν|,

b (τ, ν) = 3τ − |ν|. (A.7)

Then the transformation of the U ’s to spherical com-
ponents is given by

Uλ′λIMα′α =
∑

τ ′ν′τν

sτ
′ν′

α′ sτνα Uλ′λIMτ ′ν′τν , (A.8)

where Uλ′λIMτ ′ν′τν is defined as in (51) with σxj (i) being re-
placed by the spherical components according to (A.2). In
the coupled representation one has the following explicit
form for the U ’s:

Uλ′λIMτ ′ν′τν =
∑

Sσ

(−)τ ′+τ+σ τ̂ ′τ̂ Ŝ
(
τ ′ τ S
ν′ ν −σ

)
V τ ′τSσ
λ′λIM , (A.9)

where the quantities V τ ′τSσ
λ′λIM are given by

V τ ′τSσ
λ′λIM = 2Ŝ

∑

s′s

ŝ′ŝ





1
2

1
2 τ

′

1
2

1
2 τ

s′ s S




us

′sSσ
λ′λIM , (A.10)

with

us
′sSσ
λ′λIM = Î

√
3

∑

m′

smsm′m

(−)1−m+s′−m′

s

×
(

1 1 I
m′ −m M

)(
s′ s S
m′
s −ms −σ

)
t∗s′m′

sλ
′m′tsmsλm . (A.11)

Specifying the observable X, one has in detail:
i) differential cross-section (X = 1 = (00))

Uλ′λIM1 =
∑

s

ŝuss00λ′λIM . (A.12)

ii) single-nucleon polarization (X = (i0) for the proton or
X = (0i) for the neutron)

Uλ′λIMxp = −
√

3

2

(
V 1011
λ′λIM − V 101−1

λ′λIM

)
, (A.13)

Uλ′λIMxn = −
√

3

2

(
V 0111
λ′λIM − V 011−1

λ′λIM

)
, (A.14)

Uλ′λIMyp = i

√
3

2

(
V 1011
λ′λIM + V 101−1

λ′λIM

)
, (A.15)

Uλ′λIMyn = i

√
3

2

(
V 0111
λ′λIM + V 011−1

λ′λIM

)
, (A.16)

Uλ′λIMzp =
√
3V 1010

λ′λIM , (A.17)

Uλ′λIMzn =
√
3V 0110

λ′λIM , (A.18)

where

V 101σ
λ′λIM =

√
2
∑

s′s

(−)sŝ′ŝ
{
s′ s 1
1
2

1
2

1
2

}
us

′s1σ
λ′λIM , (A.19)

V 011σ
λ′λIM =

√
2
∑

s′s

(−)s′ ŝ′ŝ
{
s′ s 1
1
2

1
2

1
2

}
us

′s1σ
λ′λIM . (A.20)

iii) double-nucleon polarization (X = (ij))

Uλ′λIMxx/yy = −
√
3

[
V 1100
λ′λIM +

1√
2
V 1120
λ′λIM

∓
√
3

2

(
V 1122
λ′λIM + V 112−2

λ′λIM

)]
, (A.21)

Uλ′λIMzz = −
√
3
[
V 1100
λ′λIM −

√
2V 1120

λ′λIM

]
, (A.22)

Uλ′λIMxy/yx = −3i

2

[
±
√
2V 1110

λ′λIM

+
(
V 1122
λ′λIM − V 112−2

λ′λIM

)]
, (A.23)

Uλ′λIMxz/zx = −3

2

[
±
(
V 1111
λ′λIM + V 111−1

λ′λIM

)

+
(
V 1121
λ′λIM − V 112−1

λ′λIM

)]
, (A.24)

Uλ′λIMyz/zy =
3i

2

[
±
(
V 1111
λ′λIM − V 111−1

λ′λIM

)

+
(
V 1121
λ′λIM + V 112−1

λ′λIM

)]
. (A.25)

Appendix B. Quadratic relations between

observables

In this appendix we will show that for a set of n indepen-
dent t-matrix elements {tj ; j = 1 . . . n} one finds exactly
(n−1)2 quadratic relations between observables by which
the n2 linearly independent observables are reduced to a
set of 2n− 1 independent ones. To this end we introduce
the bilinear form in the t-matrix elements

Tj′j = t∗j′tj , (B.1)

which can be expressed as a linear form of the observ-
ables Oα

Tj′j =
∑

α

ταj′j Oα, (B.2)

with appropriate coefficients ταj′j . They have the property

ταj′j = τα ∗
jj′ , (B.3)

which follows from Tj′j = T ∗
jj′ and the fact that the ob-

servables are real quantities. It is straightforward to show
that these bilinear forms obey the relation

Tj′jTlm = Tj′mTlj , (B.4)

which, expressed in terms of observables, yields quadratic
relations between the latter. In particular, choosing k =
l = m, one finds

Tj′j =
Tj′kTkj
Tkk

, (B.5)
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where k can be chosen arbitrarily. It is also clear that
from (B.5) one can recover the relation (B.4). Thus we
only need to consider the latter relation, and the question
is, how many independent quadratic relations one can find.

We first note, it is sufficient to consider only one spe-
cific k, because from (B.5) one can derive straightfor-
wardly the analogous relation for any other k′. Second,
it is sufficient to consider only the cases j ′ ≤ j, because
Tjj′ = T ∗

j′j . The remaining relations certainly are inde-
pendent because of the independency of the t-matrix ele-
ments. Choosing then first j ′ = j, the case j′ = k yields
the identity, whereas for j′ 6= k one finds

Tj′j′Tkk =
∣∣Tj′k

∣∣2, (B.6)

which constitute (n− 1) real quadratic relations

∑

αα′

ταj′j′ τ
α′

kk OαOα′ =
∑

αα′

τα ∗
j′j τ

α′

j′j OαOα′ . (B.7)

As next we consider the case i < j for which one has N =
n(n−1)/2 different pairs. Again one can discard the cases
j′ = k or j = k, because they do not result in quadratic
relations, thus ruling out n − 1 relations. Therefore, one
finds in this case (j′ < j) a total number of

N − (n− 1) =
1

2
(n− 1)(n− 2) (B.8)

different complex quadratic relations of the form

∑

αα′

ταj′j τ
α′

kk OαOα′ =
∑

αα′

ταj′k τ
α′

kj OαOα′ . (B.9)

Separating these into real and imaginary parts, one finds
as total number of independent real quadratic relations
between observables

(n− 1) + 2
1

2
(n− 1)(n− 2) = (n− 1)2, (B.10)

which is just the required number of relations in order to
reduce the number of n2 linearly independent observables
to n2 − (n− 1)2 = 2n− 1 independent ones.

Appendix C. Multipole expansion of

structure functions and form factors

Here we will list more explicit expressions for the multi-
pole expansion of the structure functions of the differential
cross-section

f (′) IM(±)
a =

∑

K

f (′) IM(±), K
a dK−M−β(a),0(θ). (C.1)

As shown in detail in [10], one obtains for the coefficients
of the structure functions

f IM,K
L =

8
√
3

1 + δM0
π Î K̂2

∑

L′µ′j′Lµj

(−)L
∑

J

Ĵ2
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)

×D̃K0
00 (µ′j′µj)<e

(
iδI1C̃L′∗(µ′j′) C̃l(µj)

)
, (C.2)

f IM,K
T = − 32

√
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1 + δM0
π Î K̂2

∑
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(
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)
, (C.3)

f IM±, K
LT =
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√
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1 (µj)

)
, (C.5)
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Note, that the tilde indicates the incorporation of the

hadronic phase factor eiδ
j
µ in the multipole matrix ele-

ment. Now, we specialize further in order to obtain the
angular coefficients for the unpolarized differential cross-
section,

S0 = c
(
klab1 , klab2

) ∑

K

([
ρLf

K
L + ρT f

K
T

]
dK00(θ)

+ρLT f
K
LT d

K
−10(θ) cosφ+ ρTT f

K
TT d

K
−20(θ) cos 2φ

)
, (C.8)

by setting I = M = 0 in (C.2) through (C.7). Writ-

ing for simplicity fKL/T and f
(′)K
LT/TT instead of f00, KL/T and

f
(′) 00+, K
LT/TT , respectively, one obtains
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×
∑
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)
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1 (µj)
)
, (C.11)
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At the end of this appendix, we will give the explicit
multipole decomposition of the various inclusive form fac-
tors of d(e, e′)np, which can be obtained from the (K = 0)
coefficients of (C.2)-(C.7) according to

F (′)I−M
a = (−)I+M (1 + δM0)

×π
3

(
f (′)IM+, 0
a − f (′)IM−, 0

a

)
. (C.13)

The unpolarized form factors are given by

FL =
16π2

3
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2L+ 1
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)
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the vector polarization form factors by
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and finally the tensor polarization form factors by
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∗NL
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These expressions have already been reported before in [1].
The following two additional form factors vanish below
pion threshold if time reversal invariance holds. However,
if one considers the partial inclusive reaction d(e, e′)np,
they become nonvanishing above pion threshold in a
coupled-channel approach including isobars without ex-
plicit treatment of the NNπ-channels [1].

F 1−1
LT = −32π2

√
2
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F ′2−1
LT = −32π2
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We would like to emphasize, that if one considers the com-
pletely inclusive process d(e, e′)X, the corresponding ad-
ditional form factors will vanish as long as time reversal
invariance holds.

Appendix D. Separation of a specific

structure function

The first step in the determination of any structure func-
tion is the measurement of that asymmetry to which
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it contributes. This requires already a number of mea-
surements with different electron and deuteron polariza-
tion parameters, i.e., two for A0(X), Ae(X), AV

d (X), and
AT
d (X) and four for AV

ed(X) and AT
ed(X). Next, one must

determine how many different settings of the angles φ, φd
and θd are necessary for the final separation. As one will
see in the following, the structure functions can be divided
into different classes according to the minimum number of
asymmetry measurements required for their extraction. A
quick glance at (83) shows that the six asymmetries con-
tain differing numbers of structure functions, taking for
example an observable of type A, one finds four in A0(X),
one in Ae(X), 8 in AV

d (X), 16 in AT
d (X), 5 in AV

ed(X), and
7 in AT

ed(X). Similar numbers are found for an observable
of type B.

First we will consider an observable of type A. Obvi-
ously, the simplest case is the electron asymmetry Ae(X)
containing only f ′LT (X). This means that f ′LT (X) can be
determined from just one asymmetry measurement. Sim-
ilarly a close inspection of the dependence of the asym-
metries on the angles φ, φd and θd shows that four other
structure functions and two combinations need only one
asymmetry measurement. These are, introducing for con-
venience

S
V/T
d/ed

(
X;φ, φ̃, θd

)
= S0(φ)A

V/T
d/ed

(
X;φ, φ̃, θd

)
(D.1)

in order to exhibit the angular dependence explicitly,
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Nine other structure functions and seven combinations
require only two measurements for their separation. These
are
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where θ0d = arcos (1/
√
3) (see sect. 3).

The terms ρLf
11
L + ρT f

11
T in AV

d and ρLf
20
L + ρT f

20
T

in AT
d can also be determined from two asymmetry
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measurements, i.e.,
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In order to separate the longitudinal from the transverse
part one needs in addition a Rosenbluth analysis.

Increasing the number of asymmetry measurements to
three allows one to determine only one further structure
function and one combination, namely
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All thirteen vector structure functions are then de-
termined and fifteen of the tensor ones or respective
combinations. For the remaining combinations f 21,+TT (X),

f21,−TT (X), f22,+TT (X), f22,−TT (X), (ρLf
21
L + ρT f

21
T (X)), and

(ρLf
22
L +ρT f

22
T (X)) one needs four measurements in order

to determine them. The last two combinations require a
Rosenbluth separation in addition.

Now we turn to the separation of structure func-
tions for B-type. Without target and electron polariza-
tion one has two structure functions, one of which can
be determined by one out-of-plane measurements, namely
(f00−LT (X), φ = π

2 ), and the other needs two, (f 00−TT (X), φ =
π
4 ,

π
2 ). Electron polarization alone without deuteron polar-

ization leads to two other structure functions: f ′ 00−T (X)
which can be obtained from one out-of-plane measurement
at φ = π

2 , and f ′ 00LT (X), which requires two settings.
For the structure functions with target polarization

we find that six of them can be determined by a single
asymmetry measurement. They are
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Sixteen other structure functions require only two mea-
surements for their separation. These are
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In this last set of equations as well as for what follows
we have made a particular choice of angles to allow the
separations. This choice is not unique and other choices
will lead to different coefficients in the linear combina-
tions. The terms ρLf

10
L (X) + ρT f

10
T (X) and ρLf

11
L (X) +

ρT f
11
T (X) in AV

d (X) can also be determined from two
asymmetry measurements, i.e.,
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In order to separate the longitudinal from the transverse
part one needs in addition a Rosenbluth analysis.

Increasing the number of asymmetry measurements to
three allows one to determine only two further structure
functions, namely
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Three settings also allow a determination of the combina-
tion

c
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All fourteen vector structure functions and sixteen of
the tensor ones are then determined. For the remain-
ing functions f21+TT (X), f21−TT (X), f22+TT (X), f22−TT (X) and
(ρLf

21
L (X) + ρT f

21
T (X)) one needs four measurements in

order to determine them. The last combination and the
one in (D.54) requires an additional Rosenbluth separa-
tion. A survey on the number of asymmetry measurements
needed for the separation of a given structure function is
given in table 10.

Table 10. Number of asymmetry measurements for a structure
function of an observableX. The symbol (R) indicates the need
of an additional Rosenbluth L-T -separation.

X ∈ A

IM L, T LT+ LT− TT+ TT− T ′ LT ′+ LT ′−
10 − − 1 − 2 1 − 2
11 2(R) 2 1 3 2 1 1 2
20 2(R) 2 − 3 − − 1 −
21 4(R) 2 2 4 4 2 2 2
22 4(R) 2 2 4 4 2 2 2

X ∈ B

IM L, T LT+ LT− TT+ TT− T ′ LT ′+ LT ′−
10 2(R) 2 − 3 − − 1 −
11 2(R) 2 1 3 2 1 1 2
20 − − 1 − 2 1 − 2
21 4(R) 2 2 4 4 2 2 2
22 3(R) 2 2 4 4 2 2 2

Appendix E. Explicit expressions for the

matrix representation of U
λ

′
λIM

X

For the matrix representation of the Uλ′λIMX in (101) we
switch to the spherical representation according to (A.8)

C̃IMλ′λ
j′j (X)=

∑

τ ′ν′τν

sτ
′ν′

α′ sτνα C
m′

1m
′

2λ
′

d

m1m2λd

(
τ ′ν′τνIM

)
. (E.1)

The explicit forms of the C
m′

1m
′

2λ
′

d

m1m2λd
(τ ′ν′τνIM) for the he-

licity, hybrid and standard bases are:

i) Helicity basis with labeling (λ
(′)
p , λ

(′)
n , λ(′), λ(′)d )

C
λ′pλ

′

nλ
′

d

λpλnλd

(
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=2
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1 1 I
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2 τ

λ′n −λn ν

)
. (E.2)

ii) Hybrid basis with the labeling (λ̃
(′)
p , λ̃

(′)
n , λ(′), λ̃(′)d ),

where for proton, neutron and deuteron the spin projec-
tions refer to the transverse y-axis,

C
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nλ̃
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d
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where

ωJMjm′m = (−)j−m′
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×
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iii) Standard basis with index labeling (s(′),m(′)
s , λ(′),m(′)

d )
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Ŝ2

(
τ ′ τ S
ν′ ν −σ

)(
s′ s S
m′
s −ms −σ

)




1
2

1
2 τ

′

1
2

1
2 τ

s′ s S




. (E.5)



188 The European Physical Journal A

Appendix F. Explicit expressions of the

one-body current matrix in plane-wave Born

approximation in the standard representation

In the plane-wave Born approximation (PWBA), the final
np-scattering state is replaced by a pure plane wave. The
deuteron wave function has the form

〈~r |1λd〉 = 〈rθφ|1λd〉 =
∑

l=0,2

ul(r)

r
〈θφ|(l1)1λd〉, (F.1)

and the final-state plane wave

〈~r |~ksms〉 =
ei
~k·~r

(2π)3/2
|sms〉. (F.2)

The quantization axis is chosen along ~k, the relative np
momentum in the final state.

Taking the current in the Dirac-Pauli form, one obtains
for the one-body current matrix element in the standard
representation for the nonrelativistic charge density [33]

〈sms|ρNR(~q, ~P )|1λd〉 =
δs1

∑

j=1,2

∑

lml

C1λd
lml1ms

F1j〈~kj |lml〉, (F.3)

where C1λd
lml1ms

denotes a Clebsch-Gordan coefficient

〈lml1ms |1λd〉. The leading-order relativistic contribu-
tions arise from the p/M -expansion of the Dirac current
and from the wave function boost. The corresponding
charge density operators are denoted by ρR and ρB , re-
spectively,

〈sms|ρR(~q, ~P )|1λd〉 =

− 1

8M2
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}
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}
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Similarly, one has for the nonrelativistic transverse current
(λ = ±1)

〈sms|JNRλ (~q, ~P )|1λd〉 =
eiλφ

2M

∑
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}
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For the leading-order relativistic current contributions we
again distinguish JRλ from expanding the Dirac current
and two contributions from the boost, JBc,λ and JBs,λ, with

respect to the nonrelativistic convection and spin current,

〈sms|JRλ (~q, ~P )|1λd〉 = −
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〈sms|JBs,λ(~q, ~P )|1λd〉 =
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where ~kj = ~k−sj~q/2 with sj = ±1 for j = 1 and 2, respec-
tively. The Fourier transform of the orbital components of
the deuteron wave function is given by

〈~p |l ml〉 =
∫

d3re−i~p·~r〈~r |l ml〉

= (−)l/24π Ylml
(p̂)

∫ ∞

0

drrul(r)jl(pr), (F.10)

and

〈~p |i~q · ~r |lml〉 = −~q · ∇p〈~p |l ml〉. (F.11)

For convenience the various spin matrix elements have
been denoted by
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Furthermore,

Πq(θ) = 2kq cos θ, (F.18)

Πj,q(θ) = sjΠq − q2, (F.19)

Πj,λ(θ) = 2sjkd
1
λ,0(θ). (F.20)

Taking the current in the Sachs form, the expressions for
the nonrelativistic and boost currents are simply obtained
from (F.3), (F.5), (F.6), (F.8) and (F.9) by substitut-
ing F1j by GEj . For the other relativistic contributions
one finds
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3. H. Arenhövel, W. Leidemann, E.L. Tomusiak, Few-Body
Syst. 15, 109 (1993).
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6. H. Arenhövel, W. Leidemann, E.L. Tomusiak, Few-Body
Syst. 28, 147 (2000).
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18. H. Arenhövel, M. Sanzone, Few-Body Syst. Suppl. 3, 1

(1991).
19. M. Kawaguchi, Phys. Rev. 111, 1314 (1958).
20. A. Cambi, B. Mosconi, Phys. Rev. C 26, 2358 (1982).
21. A.S. Raskin, T.W. Donnelly, Ann. Phys. (N.Y.) 191, 78

(1989).
22. J.M. Blatt, L.C. Biedenharn, Phys. Rev. 86, 399 (1952).
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